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Abstract—Spectral graph theory uses the Laplacian matrix
of a network to analyze its network structure. The Laplacian
matrix is defined by node degrees and adjacency relationships
between nodes. A previous study clarified that the eigenvalue
distribution of the Laplacian matrix has a high similarity to
the distribution of node degrees used in the Laplacian matrix.
Degree distribution does not contain the information of adjacency
relationships between nodes, so the previous study did not
clarify the effect of the adjacency relationship information on
the eigenvalue distribution of a Laplacian matrix. In this paper,
for understanding such an effect, we investigate the relationship
between the eigenvalues of the Laplacian matrix and the familiar
indices (i.e., average path length and clustering coefficient), which
are affected with adjacency relationship information.

I. INTRODUCTION

In the actual world, there are a lot of types of networks
including food webs, friendship networks, power networks,
and world wide web. Such actual networks gather attention
in various fields such as ecology, engineering, sociology, and
physics, and many people have strived to investigate properties
of their network structures [1]–[5]. In the investigation, the
studies have used indices (e.g. average path length, clustering
coefficient and many kinds of node centralities [6]–[9]) of
network structures.

Spectral graph theory is a well-known approach to analyze
network structures [10]. In this theory, network structures
are represented algebraically with Laplacian matrix. Lapla-
cian matrix is defined by using node degrees and adjacency
relationships between nodes in a network. Its eigenvalues and
eigenvectors play a significant role for analyzing network
structures. For example, the second smallest eigenvalue of
a Laplacian matrix represents the strength of the connection
among nodes in a network [11]. The eigenvector associated
with the second smallest eigenvalue is useful to extract a weak
connection between a node pair in the network.

In [12], the authors clarified that the eigenvalue distribution
of a Laplacian matrix has a high similarity to the degree
distribution when a network is generated with well-known
network models (i.e., Erdös-Rény model [13], Watts-Strogatz
model [14], Newman-Watts model [15], and Barabási-Albert
model [16]). Degree distribution does not contain the informa-
tion of adjacency relationships between nodes, so the previous
study did not clarify the effect of the adjacency relationship
information on the eigenvalue distribution of a Laplacian

matrix. The indices of network structures are affected with
adjacency relationship information, and so would provide a
connection between adjacency relationship information and the
eigenvalue distribution of a Laplacian matrix.

In this paper, we experimentally investigate the relationship
between eigenvalues of the Laplacian matrix and familiar
indices (i.e., average path length and clustering coefficient) that
represent the information of adjacency relationships between
nodes. First, we generate networks with different adjacency
relationships between nodes and identical degree distribution.
To generate such networks, we make a network generation
model, which is an extension of the Watt and Strogatz model
(WS model). Then, we compare the eigenvalue distributions of
the Laplacian matrices of the generated networks. In addition,
we focus on the second smallest eigenvalue of the Laplacian
matrix and investigate the relationship between the second
smallest eigenvalue of the Laplacian matrix and the indices
about adjacency relationships between nodes (i.e., average path
length and clustering coefficient).

The rest of this paper is organized as follows. Section 2
outlines the definition and basic properties of the Laplacian
matrix. In Section 3, we explain average path length and
clustering coefficient. In addition, we make a network model
to generate networks with different adjacency relationships
between nodes and the identical degree distribution. Section
4 details numerical experiments conducted to investigate the
relationship between the eigenvalues of the Laplacian matrix
and the indices about adjacency relationships between nodes.
Finally, in Section 5, we conclude this paper.

II. LAPLACIAN MATRIX

In this section, we outline the definition and basic properties
of a Laplacian matrix. In addition, we explain that eigenvalues
and eigenvectors of a Laplacian matrix are useful to investigate
network structures.

A. Definition of the Laplacian Matrix

In network analysis, network structure is frequently ex-
pressed with a matrix. Let us consider an undirected graph
G = (V,E) where V is the set of nodes (i.e., V =



{1, . . . , n}), and E is the set of links. We define the following
n× n adjacency matrix A = [Aij ] as

Aij :=

{
1 (i, j) ∈ E,
0 otherwise.

(1)

Next, we define the degree matrix D as

D := diag(d1, d2, . . . , dn), (2)

where di is the degree of a node i (i = 1, 2, . . . , n).
According to [10], the Laplacian matrix of graph G is

defined as
L := D −A. (3)

Figure 1 shows an example of degree matrix D, adjacency
matrix A, and Laplacian matrix L of a simple network (n = 4).

B. Basic Properties of the Laplacian Matrix

Since Laplacian matrix is a real symmetric matrix, Lapla-
cian matrix has the following properties.

• L has n real eigenvalues λµ (µ = 1, . . . , n). λ1 is always
zero. λµ are arranged in non-decreasing order. Namely,
λ1 = 0 ≤ λ2 ≤ · · · ≤ λn.

• The eigenvectors of L associated with eigenvalue λµ, vµ
(µ = 1, . . . , n), can be chosen to be orthogonal to each
other. Even if some eigenvectors are associated with the
same eigenvalue, we can choose orthogonal eigenvectors.

• The normalized n orthogonal eigenvectors span the eigen-
basis of the n-dimensional eigenspace of L.

The other properties of a Laplacian matrix are as follows.
• The smallest eigenvalue of L is 0, the corresponding

eigenvector is the constant one vector 1, that is L1 = 0.
• The multiplicity of the eigenvalue 0 of L is the number

of connected components of G.
• The second smallest eigenvalue of L represents the

strength of the connection among nodes in a network,
and is called algebraic connectivity [11].

We describe the significance to analyze the eigenvalues and
the eigenvectors of a Laplacian matrix. Since the Laplacian
matrix is a real symmetric matrix, it can be diagonalized by
the orthogonal matrix P := (v1, v2, . . . , vn) constructed by
the orthogonal eigenvectors of L, as

P−1LP = diag(λ1, λ2, . . . , λn) = Λ, (4)
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Fig. 1. An example of the Laplacian matrix of a simple network (n = 4).

where Λ is a diagonal matrix, and its diagonal components are
eigenvalues of L.

By using the Λ and P , we rebuild L as follows

PΛP−1 = PP−1LPP−1 = L. (5)

That is, the information of L is completely included in P and
Λ. Since Laplacian matrix has all the information of network
structure, Λ and P includes the properties of the network
structure, so they should be useful to analyze networks.

III. INDICES OF NETWORK STRUCTURES AND NETWORK
GENERATION MODEL

In this section, we explain the average path length and the
clustering coefficient. In addition, in order to investigate the
relationship between eigenvalue distribution of the Laplacian
matrix and indices of network structures, we make a network
generation model, which can construct various networks with
different adjacency relationships between nodes while keep the
identical degree distribution.

A. Indices of Network Structures

1) Average Path Length: The shortest path between nodes
i and j is defined as a path having the smallest number of
links between them. The average path length is the mean of
shortest paths between all the pairs of distinct nodes. For the
length `ij of a given shortest path between node i and j, the
average path length ` is defined as

` =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

`ij . (6)

2) Clustering Coefficient: The clustering coefficient mea-
sures the degree to which nodes tend to cluster together. This
index has become popular because Watts and Strogatz use it
to investigate the small-world property of complex networks
[14]. Clustering coefficient Ci of node i is defined as

Ci =
2Mi

di(di − 1)
, (7)

where Mi is the number of links between neighbors of node
i.

Clustering coefficient C of a network is the mean of
clustering coefficients Ci of its nodes, and is defined as

C =
1

n

n∑

i=1

Ci. (8)

B. Network Generation Model

In this subsection, on the basis of the WS model, we make a
network generation model to generate networks with different
adjacency relationships between nodes and identical degree
distribution to investigate the relationship between eigenvalues
of the Laplacian matrix and indices about information of ad-
jacency relationships between nodes (i.e., average path length
and clustering coefficient).
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Fig. 2. The algorithm of the WS model.
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Fig. 3. Schematic diagram of the WS model.

1) Watts and Strogatz Model: WS model is a random
network generation model that generates networks with small-
world properties, which have small average path length and
high clustering coefficient [14].

The WS model generates a network by the following steps
(Fig. 2).

(a) Construct a k-regular network, where n nodes are
connected to k neighbor like a ring.

(b) Cut off a link (u, v) that chosen at random.
(c) Replace the original link (u, v) with a new link (u,w)

where w (w ∈ V \{u, v, ∂u}) is chosen at random. ∂u
denotes the set of adjacent nodes of u. If A and B are
sets, A \B is the relative complement of B in A. Note
that we avoid a self-loop and multiple links.

(d) Repeat steps (b) and (c) until the number of rewiring
links reaches p n k/2, where p denotes the percentage
of the links which are going to change.

The rewiring probability p in the WS model controls the
interpolation between the regular network and the random
network (Fig. 3). When p = 0, the original regular network
is not changed. When p = 1, all links are rewired randomly,
so the generated network is equivalent to a random network.
Otherwise, we obtain the network intermingled properties of
both regular network and random network.

2) Extended WS model with Identical Degree Distribution:
On the basis of the algorithm of the WS model, let us consider
network generation model which randomly rewires links while
retaining the same degree distribution of the original regular
network. In this paper, we call it as the extended WS model
(exWS model) with the identical degree distribution. The
algorithm of exWS model is as follows (Fig. 4).

(a) Construct a k-regular network, where n nodes are
connected to k neighbor like a ring.

(b) Cut off a link (u, v) that is chosen at random.
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Fig. 4. The algorithm of the extended WS model with the identical degree
distribution.

(c) Replace the original link (u, v) with a new link (u,w)
where w (w ∈ V \ {u, v, ∂u}) is chosen at random.

(d) Cut off a link (w, z) where z ( 6= v) is a adjacent node
of w chosen at random.

(e) Replace the original link (w, z) with a new link (v, z).
(f) Repeat step (b)–step (e) until the number of rewiring

links reaches p n k/2.
In steps (b) and (d), we keep all the components of the network
connected with connectivity at least 1. In addition, in steps (c)
and (e), we avoid a self-loop and multiple links. This network
generation model keeps all node degrees to k unlike the WS
model.

IV. NUMERICAL EXPERIMENT

In this section, we investigate the relationship between
the eigenvalues of the Laplacian matrix and the indices of
network structures (i.e., average path length and clustering
coefficient). First, we generate networks with the exWS model.
Then, we evaluate the indices of the generated networks, and
compare the eigenvalue distributions of the Laplacian matrices
of them. Next, we investigate the relationship between the
second smallest eigenvalue of the Laplacian matrix and the
indices about adjacency relationships between nodes.

This experiment uses the parameter configuration of the
exWS model shown in Table I. We conducted this experiment
until the width of 95% confidence interval becomes sufficiently
small.

TABLE I
PARAMETER CONFIGURATION OF THE EXWS MODEL

number of nodes n = 400
k-regular network k = 30
rewiring probability p = 0, 0.01, . . . , 0.99, 1.00

A. Average Path Length and Clustering Coefficient

Figure 5 shows average path length ` for differrent values
of rewiring probability p of the exWS model. In this figure,
average path length ` dramatically changes when p is small.



0.2 0.4 0.6 0.8 1.0

Rewiring Probability p

0

1

2

3

4

5

6

7

8

9

A
v
e
ra
g
e
 P
a
th
 L
e
n
g
th
 ℓ

Fig. 5. Average path length ` for different values of rewiring probability p.
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Fig. 6. Clustering coefficient C for different values of rewiring probability
p.

This is because shortcuts between distant nodes are created by
rewiring links.

Figure 6 shows clustering coefficient C for differrent values
of rewiring probability p of the exWS model. In this figure,
clustering coefficient C decreases gently as rewiring probabil-
ity p increases.

B. Eigenvalue Distribution of the Laplacian Matrix

Figure 7 shows eigenvalue distributions of the Laplacian
matrices for rewiring probability p = 0.1, 0.3, 0.5, and 1.0 of
the exWS model. According to figure, we show eigenvalues of
the Laplacian matrices in ascending order. In this figure, the
rewiring probability p affects the eigenvalues of the Laplacian
matrices. Since networks with different values of p have
identical degree distribution, the effect of p on the eigenvalues
is caused by the information of adjacency relationship between
nodes. In particular, the second smallest eigenvalue has a
significant influence of rewiring probability p. Hence, we
focus on second smallest eigenvalue λ2, and show λ2’s for
different values of rewiring probability p of the exWS model in
Fig. 8. In this figure, second smallest eigenvalue λ2 increases
monotonically as rewiring probability p increases. In addition,
the second smallest eigenvalue is almost linear function of p.
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Fig. 8. Second smallest eigenvalue λ2 of the Laplacian matrix for different
values of rewiring probability p.

From Figs. 5, 6, and 7, we can confirm that the eigenvalues
of the Laplacian matrix indirectly affects the average path
length and the clustering coefficient through rewiring prob-
ability p. In particular, the second smallest eigenvalue of the
Laplacian matrix indirectly affects the indices. In the following
subsections, we investigate the relationship between the second
smallest eigenvalue and the average path length, and the
second smallest eigenvalue and the clustering coefficient.

C. Relationship between the Second Smallest Eigenvalue of
the Laplacian Matrix and the Average Path Length

Figure 9 shows scatter diagrams of log10 ` and log10(λ2 +
c) (c = −0.31), and its fitted curve (y = −8.39x + 3.73).
In this figure, the second smallest eigenvalue and the average
path length have negative correlation. In addition, ` and λ2+c
have a relationship of power-law function (λ2 + c = a `b).
According to the gradient and the intercept of the fitted curve,
a = 5.4 × 103 and b = −8.39. From the above result, we
obtain the following relationship:

λ2 − 0.31 = (5.4× 103) `−8.39. (9)

Note that |c| is the minimum value of the second smallest
eigenvalues for 0 ≤ p ≤ 1.0. In the algorithm of the exWS
model, we keep all the components of the network connected
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Fig. 10. Gradient of power law relationship between log10 ` and log10(λ2+
c) for n = 200, 300, 500, and 1000, and with respect to degree k.

with connectivity at least 1. In addition, the multiplicity of
the eigenvalue 0 of the Laplacian matrix is the number of
connected components of the network. That is, no matter how
the links are rewired, the second smallest eigenvalue remains
non-zero.

Figure 10 shows the gradient of the fitted curve for the
relationship between log10 ` and log10(λ2 + c) with respect
to n = 200, 300, 500, and 1000, and different values of k of
the exWS model. In this figure, there is a regularity in the
parameter n and k of the exWS model.

D. Relationship between the Second Smallest Eigenvalue of
the Laplacian Matrix and the Clustering Coefficient

Figure 11 shows scatter diagrams of λ2 and log10 C, and
its fitted curve (y = −0.06x−0.12). In this figure, the second
smallest eigenvalue and the clustering coefficient have negative
correlation. In addition, the second smallest eigenvalue and
the clustering coefficient have a relationship of exponential
function (C = a ebλ2 ) where a = 0.76 and b = −0.14. From
the above result, we obtain the following relationship

C = 0.76 e−0.14λ2 . (10)

Figure 12 shows the decay rate b in the exponential rela-
tionship between λ2 and log10 C for n = 100, 300, 500, and
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Fig. 11. Relationship between λ2 and log10 C.
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1000, and with respect to degree k of the exWS model. In this
figure, there is a regularity in the parameter n and k of the
exWS model.

V. CONCLUSIONS

In this paper, we investigated the relationship between the
eigenvalues of the Laplacian matrix and the indices (i.e., av-
erage path length and clustering coefficient) of network struc-
tures. In order to investigate the relationship, we developed the
extended WS model a network generation model that ganer-
ates networks with different adjacency relationships between
nodes and identical degree distribution. Through our numerical
experiments, we first showed that the adjacency relationship
information affects the eigenvalues of Laplacian matrices.
We specifically found that the second smallest eigenvalues
is mostly affected by the information. Hence, we focused on
the second smallest eigenvalue, and showed the relationship
between the second smallest eigenvalue and the indices of
network structures. In particular, we showed that ` and λ2 + c
have a relationship of power-law function (λ2 + c = a `b),
and λ2 and C have a relationship of exponential function
(C = a ebλ2 ).
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