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Abstract—In this paper, we propose a novel control
method for nonholonomic constrained systems using cou-
pled oscillators composed of the Kuramoto model, which
is one of mathematical models used to describe a synchro-
nization phenomenon. The reason why we focus on the
Kuramoto model is that it has the ability to generate stable
rhythmic signals and it is sufficiently simple for mathemat-
ical analysis. We derive the stability criteria of Brockett
Integrator with the proposed method and examine the effec-
tiveness of the proposed method by several numerical sim-
ulations and experiments. Finally we apply the proposed
method to control the walking distance of Quadrupedal
Quasi-passive dynamic walker.

1. Introduction

In the field of nonlinear control theory, nonholonomic
constrained systems have been intensively investigated
since early 90’s[1]. Nonholonomic system is a peculiar
class of nonlinear systems which contains nonintegrable
mechanical constraints. It can be controllable in nonlinear
sense by considering the effect of Lie brackets of the input
vector-fields although it is uncontrollable in linear sense.
Such a system often appears in locomotion control prob-
lem of mobile robots or space robots.

As one of control strategy of nonholonomic system,
it was shown that periodic inputs with proper phase gap
such as a sine-cosine pair were effective. Here, the prob-
lem is how to create periodic inputs with a proper phase
gap. In our previous work[2], Matsuoka model, which
is a mathematical model of neural elements proposed by
Matsuoka[3], was used to generate such periodic control
inputs. The proposed control strategy was applied to rolling
sphere control problem and its effect was verified with
some numerical simulations. However, mathematical sta-
bility analysis of the proposed method has yet been con-
ducted enough.

In this paper, we propose a novel control method for
nonholonomic constrained systems based on the Kuramoto
model, which is one of the mathematical models used to
describe a synchronization phenomenon. The reason why
the Kuramoto model is used is that it has the ability to gen-
erate stable rhythmic signals and it is sufficiently simple for
mathematical analysis. Then, we derive the stability crite-
ria with the proposed method and examine the effectiveness
of the proposed method by several numerical simulations

with Brockett integrator and two-wheeled vehicle. Finally,
we apply the proposed method to control of quadrupedal
quasi-passive dynamic walking robot.

2. Brockett integrator

At first, we focus on the so-called Brockett integrator
system in particular, which is the simplest case of nonholo-
nomic systems. The state equation of Brockett integrator is
shown as follows. Ẋ1

Ẋ2
Ẋ3

 =
 1 0

0 1
X2 −X1


(

U1
U2

)
(1)

where X = (X1, X2, X3)T ∈ R3 is the system state and
U = (U1,U2)T ∈ R2 is the control input. It is clear that
X1 and X2 can be controlled directly by U1, U2, while X3
should be controlled indirectly by appropriate coordination
of U1 and U2. For instance, it was shown that periodic in-
puts U1 and U2 with proper phase gap such as sine-cosine
pair of functions[1] were effective. According to Stokes’
theorem, Lie bracket of a pair of vector-fields corresponds
to the displacement in the state space as a result of periodic
input with sufficiently small amplitude.

Therefore, it can be expected that X3 is able to be con-
trolled with some periodic inputs U1 and U2. The problem
is how to create periodic inputs with a proper phase gap. In
this paper, we use well-known Kuramoto model to produce
such periodic inputs.

3. Feedback control for nonholonomic systems using
the Kuramoto model

3.1. Control of Brockett integrator

3.1.1. Kuramoto model

It is well known that there are many kinds of synchro-
nization phenomena in autonomous system, such as me-
chanical system, chemical reaction and circadian rhythm.
The Kuramoto model, first proposed by Kuramoto, is
one of the mathematical models used to describe such
synchronization[4]. The Kuramoto model consists of a
population of N coupled phase oscillators θi having natural
frequencies ωi. For example, if N = 2, Kuramoto model
can be denoted by

dθ1
dt
= ω1 + k12 sin(θ2 − θ1),

dθ2
dt
= ω1 + k12 sin(θ1 − θ2), (2)

- 288 -

2014 International Symposium on Nonlinear Theory and its Applications
NOLTA2014, Luzern, Switzerland, September 14-18, 2014



where k12 denotes the coupling strength between oscilla-
tors. This model is simple enough to be mathematically
tractable, yet sufficiently complex to be nontrivial. As a re-
sult, it have been shown that this model can display a large
variety of synchronization patterns.

3.1.2. Proposed control method

Based on the Kuramoto model (2), let us consider the
following oscillator model with a feedback term.(

θ̇1
θ̇2

)
=

(
(1 + KpX3)ω0 + k sin(θ2 − θ1)
(1 − KpX3)ω0 + k sin(θ1 − θ2)

)
, (3)

whereω0 is the common natural frequency, k is the bonding
strength of oscillators and Kp is the feedback gain.

Using these oscillators θ1 and θ2, we propose to assign
the following U1 and U2 as the control inputs for Brockett
integrator (1),

U1 = A cos(θ1)θ̇1, U2 = B cos(θ2)θ̇2. (4)

3.1.3. Stability Analysis

In this section, we show that the proposed control in-
puts (4) can deliver X3 in the system (1) to 0a if the phase
difference between the oscillators (3) is sufficiently small,
that is, sin(θ1 − θ2) ≈ θ1 − θ2.

Let Θ and Θ̇ be Θ := θ1 − θ2 and Θ̇ := dΘ/dt. Brockett
integrator system (1) with inputs (4) can be rewritten to

Ẋ3 = −ABω0 sinΘ + AB sin(2ω0t)(Kpω0X3 − k sinΘ)

Θ̇ = 2(Kpω0X3 − k sinΘ).

When sinΘ ≈ Θ, these equations can be linearized to

Ẋ3 = −ABω0Θ + AB sin(2ω0t)(Kpω0X3 − kΘ) (5)

Θ̇ = 2(Kpω0X3 − kΘ). (6)

The stability condition of the linearized system (5)
and (6) is given by the following theorem.

Theorem 1. The origin (X3,Θ) = (0, 0) of (5), (6) is
asymptotically stable if k > ABKpω0/2.

Proof. At first, we introduce Krasovski theorem[5], which
gives a sufficient condition for a stability of periodic dy-
namical system.

Krasovski Theorem. Let ẋ = f (t, x) be a differential
equation which is periodic in t with period T . Suppose
there exists a C1 function V : I × Ω → R, periodic in t
with period T , such that for some function a ∈ R and every
(t, x) ∈ I ×Ω:

1) V(t, x) ≥ a(||x||); V(t, 0) = 0;

2) V̇(t, x) ≤ 0;

3) expect for the origin, M contains no complete positive
semi-trajectory where M = {(t, x) ∈ I ×Ω : V̇ = 0};

are satisfied.
Then, the origin is uniformly asymptotically stable.

Using this theorem, we show the stability of the sys-
tem (5), (6) .

Let x be x = (X3,Θ). We defined V(t, x) and a(||x||) as
follows,

V(t, x) = 2(Kpω0X3 − kΘ)2 + ABKpω
2
0Θ

2 (7)

=: αX2
3 + 2βX3Θ + γΘ

2 (8)

a(||x||) = α + γ +
√

(α − γ)2 + 4β2

2
(X2

3 + Θ
2). (9)

It is obvious that V(t, 0) = 0. From Eq. (8) and (9),
V(t, x) − a(||x||) yields

V(t, x) − a(||x||)

=
α − γ +

√
(α − γ)2 + 4β2

2
X2

3 + 2βX3Θ +
−α + γ +

√
(α − γ)2 + 4β2

2
Θ2

=


√
α − γ +

√
(α − γ)2 + 4β2

2
X3 +

√
−α + γ +

√
(α − γ)2 + 4β2

2
Θ


2

≥0. (10)

From the inequality, it is verified that the condition 1) in
Krasovski Theorem is satisfied.

Next, differentiating V(t, x) with respect to t, V̇(t, x) can
be derived as

V̇ = 4(Kpω0X3 − kΘ)(Kpω0Ẋ3 − kΘ̇) + 2ABKpω
2
0Θ̇Θ

= 2Θ̇{Kpω0(−ABω0Θ + AB sin(2ω0t)Θ̇/2) − kΘ̇}
+ 2ABKpω

2
0Θ̇Θ

= (ABKpω0 sin(2ω0t) − 2k)Θ̇2 (11)

≤ (ABKpω0 − 2k)Θ̇2. (12)

From Eq. (12), it can be said that the condition 2) in
Krasovski Theorem is satisfied if k > ABKpω0/2.

Finally, from Eq. (11), (6), M can be described as:

M = {(t, X3,Θ) : Kpω0X3 − kΘ = 0} (13)

Suppose a (t∗,X∗3,Θ∗) ∈ M. If a trajectory which starts
from (t∗,X∗3,Θ∗) are always contained in M, the equation
Kpω0Ẋ3 − kΘ̇ = 0 has to be satisfied at least. From
Eq. (5), (6), the time evolution of (X3,Θ) from (t∗, X∗3,Θ

∗)
can be derived as:

Ẋ3 = ω0Θ
∗, Θ̇ = 0. (14)

Therefore, only the origin can stay on M, and then, it is
verified that the condition 3) in Krasovski Theorem is sat-
isfied.

The above discussion provides that all conditions of
Krasovski Theorem are satisfied if k > ABKpω0/2. There-
fore, the origin x = (X3,Θ) = (0, 0) of the system (5), (6)
is asymptotically stable if k > ABKpω0/2. □

From the theorem, it can be said that the proposed con-
trol method can deliver X3 to 0 if the phase difference be-
tween the oscillators is sufficiently small.
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Figure 1: Control of Brockett integrator with proposed
method

φ

Figure 2: Kinematic model of two-wheeled robot

3.1.4. Simulation Result

We verified the proposed control method by some nu-
merical simulations. Figure 1 shows the simulation results
when the initial state was X = [5, 0, 0]T and the feedback
gain was Kp = 0.1 in Eq. (3). Other parameters were set
as k = π, ω0 = π and A = B = 1 such that the condition
k > ABKpω0/2 is satisfied.

Figure 1(a) shows the trajectory of X1, X2 and X3 and
Fig. 1(b) shows the phase difference θ1 − θ2. It can be seen
that X3 successfully converged to 0 and the phase differ-
ence θ1 − θ2 also converged to 0. Therefore, it was verified
that X3 in Brockett integrator (1), which corresponds to the
direction of Lie bracket, can be controlled by the proposed
control method (3) .

3.2. Control of two-wheeled vehicle

In this section, we apply the proposed approach to con-
trol of two-wheeled vehicle, which is one of the nonholo-
nomic systems as well as Brockett integrator.

3.2.1. Transformation from Brockett integrator to Two-
wheeled vehicle

Figure 2 shows the kinematic model of two-wheeled ve-
hicle. Under non-slip and non-slide assumptions, the kine-
matic equation of the two-wheeled vehicle model is shown
as follows, ẋ

ẏ
ϕ̇

 =
 cos ϕ/2 cos ϕ/2

sin ϕ/2 sin ϕ/2
1/2r −1/2r


(

vr

vl

)
, (15)

where vr and vl are velocities of right and left wheel respec-
tively, θ is the attitude of the vehicle and 2r is the vehicle
width.

In non-linear control theory, it is known that the two-
wheeled vehicle system is classified into the same class of
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Figure 3: Control of two-wheeled vehicle.

nonholonomic system as the Brockett integrator and these
two systems are equivalent under coordinates and inputs
transformations. Such transformation between Brockett in-
tegrator (1) and the two-wheeled robot model (15) can be
derived as following,

X1 = x, X2 = tan ϕ, X3 = 2y − x tan ϕ (16)

and

vr =
U1

cos(tan−1 X2)
+ r cos2(tan−1 X2)U2 (17)

vl =
U1

cos(tan−1 X2)
− r cos2(tan−1 X2)U2. (18)

Under the non-slip and non-slide constraints, the two-
wheeled vehicle can not move toward the positive direc-
tion of y-axis, which is vertical to the wheels in a moment.
Then, in order to control y of the two-wheeled vehicle (15),
we try to control X3 in Eq. (16) with the proposed control
method (3) and (4).

3.2.2. Simulation Result

We confirm an effect of proposed method with numerical
simulation. The physical parameter is set as 2r = 0.24. The
control parameters in Eq. (3) are set as k = π，ω0 = π, Kp =

0.2 and A = B = 1. Figure 3 shows the simulation result
with the initial state (x, y, ϕ)T = (0, 0,−3)T . Figure 3(a) and
3(b) show the trajectory of (x, y, ϕ) and X3 = 2y − x tan ϕ
respectively. Although y continued to oscillate a little, the
trajectory of y successfully converged to near 0 and X3 =

2y − x tan ϕ converged to 0. From this result, it is verified
the proposed control method (3) can be also applied to the
control of y in the two-wheeled vehicle, which corresponds
to the vertical direction to the wheels.

4. Feedback Control of Quadrupedal Quasi-passive
Dynamic Walking Robot

4.1. Quadrupedal quasi-passive dynamic walking
Robot “Duke”

Finally, we apply the proposed control method to con-
trol of quadrupedal quasi-passive dynamic walking robot.
Passive Dynamic walking(PDW) refers to a class of me-
chanical devices that are able to walk down a shallow in-
cline without any actuation and can realize walking by very
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Figure 4: Quasi-passive dynamic walking robot “Duke”

simple mechanisms[6]. Therefore, much attention has been
paid to PDW as an approach to realize walking robot[7, 8].

In our previous research[9], we developed Quasi-passive
dynamic walking robot “Duke”(Fig. 4). This robot was de-
signed based on PDW robot and was able to walk on the
level ground only by exerting measly energy only in the
lateral direction using invert pendulums of each two legged
element(See Fig. 4(a)). In addition, as a result of analy-
ses based on the nonlinear control theory, we revealed that
Duke had a nonholonomic constraint that was corresponds
to that of two-wheeled vehicle. And we concluded that the
locomotion of Duke consisted of Lie bracket motion de-
rived from a sphere rolling motion of the sole and a leg
swinging motion. Therefore, we apply the proposed con-
trol method (4) to the control of the walking distance of
Duke.

4.2. Experimental Result

We confirm an effect of proposed method through walk-
ing experiments with the quadrupedal quasi-PDW robot
Duke. Let us define the posture angle ϕ and position (x, y),
which is the center of the robot, as shown in Fig. 4(b). To
associate with the result in Section 3.2, the walking direc-
tion of Duke was coincided with the positive direction of a
y-axis.

Figure 5 shows the experiment result when the initial
state was (x(0), y(0), ϕ(0))T = (0,−0.5, 0)T . The parame-
ters were set as k = 3π，ω0 = 2π/1.5, Kp = 2, A = 0.1
and B = 0.3. Figure 5(a), 5(b) show the walking dis-
tance y and the trajectory (x, y) respectively. At first, Duke
walked forward while repeating lateral oscillation of each
two-legged element. Gradually Duke approached y∗ = 0
and the phase difference of lateral oscillation and the walk-
ing velocity became small. Finally, Duke became to keep
stamping around y ≈ 0.15[m].

From the result, the effectiveness of the proposed control
method for the control of Duke was confirmed to some ex-
tent. However, some steady-state deviation was observed.
This is thought to be due to a leg swinging motion, which
was not considered in the two-wheeled vehicle model. To
reduce the error, it may be effective to integrate a integrator
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Figure 5: Experimental: feedback control of walking dis-
tance

into the controller. This issue is left as a future work.

5. Conclusion

In this paper, we proposed the feedback control method
for nonholonomic constrained systems based on the Ku-
ramoto model and showed the stability of Brockett inte-
grator system with the proposed control method. Through
numerical simulations, we verified that the control method
can control Brockett integrator and two-wheeled vehicle,
which are well-known nonholonomic constrained system.
Finally we applied the proposed method to control the
walking distance of Quadrupedal quasi-PDW robot Duke.

The stability analysis in this paper was limited by the
assumption that the phase difference is relatively small. To
apply it to more complicated systems, it should be extended
in the future work.
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