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Abstract—The mathematical structures under the
conductance-based neuron models have been studied ex-
tensively from the perspective of the nonlinear dynamics
and bifurcation theory. We proposed to design silicon neu-
ron models by re-constructing the topological structures
in the phase portraits and the bifurcation diagrams of the
conductance-based neuron models utilizing device-native
curves. It not only allows us to design simple circuitry re-
taining the neuronal dynamics but also provides effective
procedures to determine the parameter voltages applied to
operate the circuits. An analog Very-Large-Scale Integra-
tion (aVLSI) silicon neuron model that mimics the math-
ematical structures in two groups of bursting neurons was
designed based on this idea. The results of the theoretical
model and HSpice simulations are reported.

1. Introduction

The silicon neuron is an artificial copy of the neuronal
cells made of electronic circuit, which is designed to sim-
ulate electrophysiological behavior in real time. Most of
the silicon neurons are comprised of low-power consum-
ing analog circuit that solves the models of neuronal cells.
Implementing a detailed model of ionic conductances such
as Leech heart interneuron model yields a silicon neuron
circuit very similar to its biological counterpart [1]. How-
ever, such circuits, the conductance-based silicon neurons,
reflect the complexity of the neuron models into their cir-
cuitry, which affects their stability, power consumption,
and tunability of parameters. Particularly, the last point is
a critical problem because these neuron models are depen-
dent on large number of parameters and the characteris-
tics of the circuit cannot be free from deviation. Some re-
searchers adopt ultimately simple neuron models, the leaky
integrate-and-fire model and its expansion, to resolve these
problems [2], though it sacrifices the dynamical behavior of
the silicon neurons, because such models describe limited
aspects of the neuronal behavior.

In our previous works [3][4][5], we applied the tech-
niques of qualitative modeling to design silicon neu-
ron models that can be implemented by a simple and
low-power consuming Metal-Oxide-Semiconductor Field-
Effect Transistors (MOSFETs) circuit. These mathemat-
ical techniques have been studied over 50 years to eluci-

date the mechanisms of various neuronal behaviors utiliz-
ing the phase plane and the bifurcation analysis [6]. By
reproducing such mechanisms utilizing the characteristics
curves of MOSFET circuits, we can design device-native
silicon neuron models that have the intrinsically same dy-
namics as the original neuron model. A silicon neuron
model designed by this approach is presented in the fol-
lowing sections. It is designed to be implemented by dif-
ferential pair and current-mode integrator circuitries oper-
ated in the subthreshold region of the MOSFET. These ul-
timately low-power-consuming circuitries are established
and commonly utilized in conductance-based silicon neu-
rons [1][7]. Another advantage to the simple circuitry and
the preservation of dynamical behavior is that we can de-
termine the parameter voltages adapting the variation of the
circuit at fabrication by the mathematical techniques.

2. Design of system equations

The model of our silicon neuron is designed so that it
copies the mathematical structures in two groups of burst-
ing neurons, the square-wave and the elliptic bursters [8].
It had been elucidated that both of the bursters comprise a
fast subsystem and a slow negative feedback current. The
former is a basic excitable system that produces action po-
tentials and the latter operates as an intrinsic stimulus to
the former. The key property in these types of bursting is
the bistability in the fast subsystem, which is produced by
a saddle-loop homoclinic orbit bifurcation in the square-
wave bursters and a subcritical Hopf bifurcation in the el-
liptic bursters. Our model re-constructs the topological
structures in their phase portraits and bifurcation diagram.

The system equations of our silicon neuron model are as
follows:

Cv
dv
dt

= −g(v)+ fm(v)−n−q+ Ia+ Istim, (1)

dn
dt

=
fn(v)−n

Tn
, (2)

dq
dt

=
fp(v)−q

Tq
, (3)

where n is a recovery variable and v and q respectively rep-
resent the membrane potential and the slow negative feed-
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Figure 1: The n-v phase plane of the fast subsystem in our
silicon neuron model in the square-wave burster mode. The
value of q is near to and smaller than a saddle-loop homo-
clinic orbit bifurcation point.

Figure 2: The v-q phase plane of our silicon neuron model
in the square-wave burster mode. Mp = 66.0pA.

back that operates as an intrinsic stimulus current in paral-
lel with an external one Istim and a constant bias current Ia.
The first two variables are the component of the fast sub-
system. The time constants of the variables v, n, and q are
represented by Cv, Tn, and Tq, respectively. The functions
g(v) and fx(v) (x=m,n, p) are the characteristic curves of
differential-pair-based circuits. They are functions similar
to the hyperbolic tangent as follows:

g(v) = S
1− exp(− κUT

(v− θ)/2)

1+ exp(− κUT
(v− θy)/2)

, (4)

fx(v) = Mx
1

1+ exp(− κUT
(v−δx))

, (5)

where x = m, n, and p. In these equations, κ and UT are
respectively the capacitive coupling ratio and the thermal
voltage, S and Mx are non-negative constants that control
the amplitude of these functions, and θ and δx are constants
that displace these functions in the direction of the v-axis.

2.1. Square-wave burster mode

When the parameters are selected appropriately, a
saddle-loop homoclinic orbit bifurcation emerges in the

(a)

(b)

Figure 3: Time series of the membrane potential v. (a)
chaotic bursting (Mp = 65.4 pA). (b) regular bursting (Mp
= 66.0 pA). When Mp is smaller the system produces tonic
or chaotic firing patterns (not shown).

fast subsystem when q is varied. The n-v phase plane near
this bifurcation is drawn in Fig. 1. There exists a bista-
bility between a stable limit cycle that represents a tonic
firing state and a stable equilibrium ((S) in the figure) that
represents a silent state. Figure 2 illustrates the bifurcation
diagram of the fast subsystem where the bifurcation param-
eter is q, which draws the v-q plane of the whole system.
When the system state is at the left (right) side of the q-
nullcline, dq

dt is positive (negative). This negative-feedback
nature of q produces alternation between the tonic firing
and the silent states where v is high and low, respectively.
It is a mechanism of the burst firing. A trajectory of the
state point is drawn in the figure (the closed curve labeled
“orbit”).

The waveforms of the membrane potential v are shown
in Fig. 3, where (b) corresponds to the trajectory drawn
in Fig. 2 and (a) shows a chaotic firing patterns observed
when Mp is varied. In the previous work[5] we showed
that our model produces chaotic firing patterns very simi-
lar to those reported both in a qualitative[9] and a biolog-
ical models[10] of the square-wave burster. The fact that
our model retains appropriately the ability to produce very
complex firing patterns in the square-wave bursters sup-
ports that our model is their successful silicon-optimized
model.

2.2. Elliptic burster mode

In this configuration, the parameters are selected so that
the stable state loses stability via a subcritical Hopf bifur-
cation when q is decreased. The v-q plane of our silicon
neuron model is drawn in Fig. 4. There is a unique stable
equilibrium when q is sufficiently large and more than half
part of the limit cycle is at the left side of the q-nullcline.
Accordingly, q operates as a slow negative feedback cur-
rent, which produces burst firing whose trajectory is drawn
in the figure (the closed curve labeled “orbit”). The wave-
form of the membrane potential v that corresponds to this
trajectory is shown in Fig. 5.

- 262 -



Figure 4: The v-q phase plane of our silicon neuron model
in the elliptic burster mode. The stability of the unique
equilibrium is inverted when q passes the Hopf bifurcation
point. There exists bistability when q is between the Hopf
bifurcation and the fold bifurcation points.

Figure 5: Time series of the membrane potential v.

3. Circuit Design and Parameter Tuning

The silicon neuron model designed in the previous sec-
tion is implemented by a circuit whose block diagram is
shown in Fig. 6. The circuitries of the blocks fx(v) and
g(v) are composed of differential pairs and current mirrors
(Fig. 7). Integration of the variables n and q are realized by
current-mode integrator circuits, whose circuitry is shown
in Fig. 8. Their output currents In and Iq and the voltage
of the capacitor Cv correspond to n, q, and v in the system
equations, respectively.

Figure 6: Block diagram of a silicon neuron circuit that
implements our model.

(a) (b)

Figure 7: Schematics of the differential pair circuits for (a)
g(v) and (b) fx(v) (x = m, n, and p) in our silicon neuron
model. The currents S and Mx are determined by the ex-
ternally applied voltages VS and VMx, respectively.

Figure 8: Schematic of the current-mode integrator in our
circuit. The output current Ix is the temporal integration of
x∞− Ix, where x∞ is the input current. The time constant is
determined by the capacitance C and the current Iτx. The
terminal Vofst is connected to a constant voltage source.

The three switches and the feedback amplifier (SW1–3
and Voltage clamp amp. in Fig. 6) allow us to make voltage
clamp measurement. For the normal operation as a silicon
neuron, SW1 and SW2 are turned on and SW3 is off . If
SW1 and SW2 are turned off and SW3 is on, the membrane
potential v is fixed to Vc by injection of Iv . The currents
Iv, In, and Iq at the stationary state are measured for each
Vc value, which draw the v-, n-, and q-nullclines, respec-
tively. The n-v phase plane of the fast subsystem is drawn
by combination of the first two nullclines. Because their
topological structures, not exact shape, are responsible to
the system’s dynamics, we can determine the externally ap-
plied parameter voltages viewing the n-v phase plane struc-
tures dependent on the deviation of the circuits. Once the
fast subsystem has set up, we can determine the parame-
ter voltages for the slow feedback by drawing a part of the
v-q plane. When SW1 is turned on and SW2 and SW3
are off, the fast subsystem operates independent of Iq. Be-
cause −Istim is equivalent to Iq, the stable structures of the
v-q plane are drawn by plotting v for each Istim value while
decreasing and increasing it. We performed HSpice sim-
ulation utilizing TSMC CMOS .35µm mixed signal pro-
cess PDK. Figure 9 shows an example v-q plane drawn in
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Figure 9: The v-q plane drawn in the HSpice simulation
(corresponds to Fig. 2).

the simulation, where the two filled regions represent sta-
ble limit cycle. We can presume that there exists a stable
limit cycle between them, and the Hopf bifurcation point
is on the left edge of the right one. According to the pro-
cedures described above, we succeeded to find appropriate
parameter sets for both of the square-wave and the elliptic
burster modes. Total power consumption was estimated to
be lower than 20 nW. In Fig. 10(a) and (b), the transient
simulation results are shown that closely resemble the the-
oretical simulation results of the model shown in Fig. 3.
We also succeeded to find a parameter set for the elliptic
burster mode (Fig. 10(c)) in HSpice simulation.

4. Conclusion

We proposed a mathematical-structure-based approach,
a new strategy for designing silicon neuron circuits based
on the mathematical techniques. It not only allows us to
design simple circuitry retaining the neuronal dynamics but
also provides powerful theoretical procedures to determine
the parameter voltages to realize an intended dynamics.
This is demonstrated by a silicon neuron circuit designed
according to this strategy that can be configured into two
bursting modes, the square-wave and the elliptic burster
modes. Though we could not describe because of space
limitations, our circuit can be configured to copy the dy-
namics in the non-bursting neuron models, either the Class
I or II in the Hodgkin’s classification by turning SW2 off.
If a slow variable is added that can be implemented by the
same circuitry as q, our silicon neuron can produce dynam-
ics of the parabolic burster [8] (Fig. 10(d)), another group
of bursting neurons including Aplysia R15 cell.
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Figure 10: HSpice transient simulation results. (a) and (b)
are in the square-wave burster mode (respectively corre-
spond to Fig. 3(a) and (b)). (c) is in the elliptic burster
mode. (d) is in the parabolic burster mode that are realized
by adding another slow variable.
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