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Abstract—A tutorial introduction to electrical oscilla-
tors. Investigating Wien bridge oscillators as modified
multi-vibrators. Introducing chaotic behavior into a Wien
bridge oscillator by means of adding a simple nonlinear cir-
cuit as a load of one of the amplifier input terminals.

1. Introduction

1.1. Modeling

Electrical circuits are man-made systems. Traditionally
they are divided into power circuits for transfer of energy
and electronic circuits for transfer of information. Energy
is represented by the concepts of electrical charge q and
magnetic flux φ. Information is represented by the concept
of a bit.

In order to describe and understand electrical circuits we
make use of mathematical models. Electrical circuits are
nonlinear systems so it is necessary to make assumptions
in order to setup analytical models. Our basic approach is
to assume quasi-stationary circuits i.e. if the size of the
circuits is small compared to the wavelength of the signals
then lumped element models may be used.

It is difficult to measure flux φ and charge q. It is more
easy to measure voltage V = dφ/dt and current I = dq/dt.
So we choose voltages across V(X) and currents through
I(X) the lumped elements X of our circuit as the variables
of our model. That is we choose a set of nonlinear differ-
ential and algebraic equations as a model for our circuit.
It is difficult to solve nonlinear equations analytically so
we assume that the signals are small in amplitude so linear
models for the elements may be used. For more than 100
years we have designed electrical circuits based on linear
models. We have introduced the concept of a time invari-
ant DC bias-point as the reference for the AC signals. We
have introduced the concepts of harmonic distortion and
noise in order to handle the nonlinear performance.

Linear electronic circuits like filters and amplifiers nor-
mally have one signal input port and one signal output
port. The DC power supply is a step signal input port of
the circuit which create the DC bias-point. We introduce
the transfer function of the circuit as the ratio between the
output signal and the input signal. The transfer function
is a rational function with a numerator and a denominator
polynomial: H(s) = N(s)/D(s) where s is the complex fre-
quency. The roots of the denominator polynomial D(s) are
the natural frequencies of the circuit also called the poles.

The poles are the eigenvalues of the Jacobian of the linear
differential equation model for the circuit.

Modeling is the art of creating a model for your sys-
tem which is able to give answers to your questions con-
cerning your system in the most simple way. If you ob-
serve agreement with your measurements you may believe
in your model [1].

1.2. Oscillators

Oscillators are a special group of electrical circuits
which are able to deliver a steady state signal on the output
port for zero signal on the input port. The output signal is
the step response of the power supply input i.e. a steady
state oscillator do not have a time invariant DC bias point.

A steady state linear oscillator must have a complex pole
pair on the imaginary axis. This is impossible in the real
world. You can not balance on the razors edge. The poles
of the linear circuit must be either in the left half (LHP) or
in the right half (RHP) of the complex frequency plane i.e.
a linear oscillator is a damped circuit. If the complex pole
pair is in RHP the amplitude of the signal goes to infinite
which is impossible. A steady state oscillator must be a
nonlinear circuit.

The kernel in our circuit analysis programs (SPICE pro-
grams) is the iterative solution of a linear set of equations.
For each integration step the nonlinearities are replaced
with static or dynamic values depending on the iteration
schemes (Picard or Newton/Rhapson iteration). That is for
each integration step we have an instant bias point and an
instant linear small signal model so it make sense to inves-
tigate the eigenvalues of the linearized Jacobian, the poles
of the small signal model. With time these poles move be-
tween RHP and LHP so we have a balance between the
energy received from the power source when the poles are
in RHP and energy lost when the poles are in LHP.

In an instant solution point a nonlinear dynamic system
will behave in accordance with the eigenvalues of the lin-
earized system. If the poles are in RHP of the complex
frequency plane the signals will increase in amplitude. If
the poles are in LHP the signals will decrease in amplitude.
In short:
We may investigate nonlinear circuits as

time varying linear circuits.
Feed-back is an important issue of electrical systems.

According to the modified Barkhausen criterion [2] an os-
cillator is designed as a closed loop of a linear amplifier
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with gain A and a linear frequency determining feedback
circuit with transfer function H(s) = N(s)/D(s). The loop
is opened and the circuit is designed with gain 1 and phase-
shift ∠0. The loop is closed and regeneration is assumed
to start-up oscillations because of positive feed-back. Very
often you observe oscillations but unfortunately you have
no guarantee of steady state oscillations. The criterion is
an observation [3] for placing the complex pole pair of a
steady state linear oscillator on the imaginary axis. In order
to start up oscillations the circuit is modified i.e. the poles
are moved to RHP so the linear circuit becomes unstable.
The mechanism is regeneration with positive feedback of
the output signal.

2. Bridge Oscillators

The first electrical bridge circuit was invented in 1833 by
S. Hunter Christie [4] ten years before it was reported by
C. Wheatstone. Very many bridge circuit have been pro-
posed for measurements as e.g. Resonance, Hay, Owen,
Maxwell, Wien and Schering [5]. Figure 1 shows a loop
of an amplifier and a bridge circuit. The input port of
the bridge is nodes (+,−) = (3, 0) and the output port is
(+,−) = (2, 1). When the bridge is in balance V(2) = V(1).
If the impedances are resistors the value of one unknown
resistor may be calculated from the other three resistors.
The input port of the amplifier is (+,−) = (1, 2) and the
output port of the amplifier is (+,−) = (3, 0). The am-
plifier is inverting so we have a proper Barkhausen topol-
ogy with positive feed-back and regeneration. If we ob-
serve a steady-state signal V(3) on node 3 for Vin = 0 we
have an oscillator. Apparently the first bridge oscillator
was reported in 1938 by L.A. Meacham [6]. With refer-
ence to fig 1 he introduced a crystal as ZA (the frequency-
controlling resonant element), a thermally controlled resis-
tance (a small tungsten-filament lamp of low wattage rat-
ing) as ZC and fixed resistances as ZB and ZD.

Figure 1: A loop of a bridge-circuit and an amplifier which
may be an oscillator if Vin = 0 and V(3) , 0

2.1. Multi-Vibrators

If the elements of the bridge circuit are linear the neces-
sary nonlinearity for steady state oscillations must be pro-

vided by the amplifier i.e. we can not use an ideal opera-
tional amplifier model with infinite gain.

In the following we will assume that the amplifier is a
perfect voltage controlled voltage source with infinite in-
put impedance and zero output impedance. The gain A is
assumed to be time varying i.e. with reference to fig 1:

V(3) = A(t) ∗ (V(1) − V(2))
For Vin = 0 and V(3) , 0 the following characteristic equa-
tion is derived:

1
A
+

ZD

ZC + ZD
− ZA

ZA + ZB
= 0 (1)

From this equation the characteristic polynomial of the in-
stant linear circuit may be derived.

Each of the impedances define a port of the circuit. Ta-

Port Input Impedance A = ∞ A = 1 A = 0

D ZC
ZB−ZA(A−1)
ZA+ZB(A+1) − ZAZC

ZB

ZCZB
ZA+2ZB

ZC

B ZA
ZD−ZC (A−1)
ZC+ZD(A+1) − ZAZC

ZD

ZAZD
ZC+2ZD

ZA

A ZB
ZC−ZD(A−1)
ZD+ZC (A+1) − ZDZB

ZC

ZBZC
ZD+2ZC

ZB

C ZD
ZA−ZB(A−1)
ZB+ZA(A+1) − ZDZB

ZA

ZDZA
ZB+2ZA

ZD

Table 1: Input impedance

ble 1 shows the input impedances of the four ports. If the
impedances are resistors and the amplifier is an ideal op-
erational amplifier then it is seen that the input resistor is
equal to minus the product of the neighbor resistors divided
by the opposite resistor e.g. RB is loaded by −RARC/RD. In
[7] it is reported that we have four common multi-vibrators
if one of the four resistors is replaced with a memory el-
ement capacitor or inductor: CD, CB, LA or LC . In these
cases the time varying linear circuit has a real pole in RHP
for A > 1 and we observe oscillations with an amplitude
determined by the power rails. It is obvious that multi-
vibrator behavior is not violated by inserting a resistor in
series with CB.

2.2. Wien Bridge Oscillators [8]

In 1939 W.R. Hewlett [9] created a Wien Bridge oscilla-
tor where ZA is a RC parallel circuit, ZB is a RC series cir-
cuit, ZD is a nonlinear resistor RD (tungsten-filament lamp)
and ZC is a linear resistor RC .

ZA =
1

sCA +
1

RA

=
RA

1 + sRACA
(2)

ZB = RB +
1

sCB
=

1 + sRBCB

sCB
(3)
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From the equations (1), (2) and (3) the characteristic poly-
nomial of the instant linear circuit may be derived as

s2 + 2αs + ω2 = 0 (4)

where

2α =
1

CARA
+

1
CBRB

+
1

CARB

RD − RC(A − 1)
RC + RD(A + 1)

(5)

and

ω2 =
1

CARACBRB
(6)

The roots of the characteristic polynomial becomes

p1, p2 = −α ± j
√

(ω2 − α2) (7)

Figure 2 shows a 3.333kHz Wien Bridge oscillator de-

Figure 2: Wien Bridge Oscillator, frequency 3.333kHz, RA
=RB = 20kΩ, CA =CB = 2.387324147nF, RC = 6.010kΩ,
RCL = 17kΩ and RD = 3kΩ. The diodes D1 and D2 are
D1N4148, and the operational amplifier is an AD712.

Figure 3: Multi-vibrator, y axis for A ±100
A=V(3)/V(1,2) and V(3) as function of time

signed according to the Barkhausen criterion i.e. 2α = 0
assuming A = ∞. The linear resistor RC is replaced with
RC in parallel with a nonlinear resistor based on two diodes
in antiparallel and a resistor RCL = 17kΩ i.e. the resistor

is large for small signals and small for large signals. RC

is made slightly greater than 2RD so the linear circuit be-
comes unstable with a complex pole pair in RHP (α < 0).

Now we remove the diodes, RCL and CA so we have
a multi-vibrator with CB as the single memory element
loaded with a negative resistor RB−RARC/RD = −20.07kΩ.
The RC time constant becomes −47.9µs. Figure 3 shows
that the pulse width is 64µs and the amplitude is deter-
mined by the power rails ±10 volt.

Figure 4: Wien Bridge Oscillator, y axis for A ±20k
A=V(3)/V(1,2) and V(3) as function of time

Now the capacitor CA = CB is added in parallel to RA

and fig. 4 shows that the amplitude is determined by the
power rails.

Finally the diodes and the resistor RCL are added and fig.
5 shows that the amplitude is reduced to 0.6 volt.
The conclusion is that multi-vibrator behavior is the ker-

Figure 5: Wien Bridge Oscillator, y axis for A ±20k
A=V(3)/V(1,2) and V(3) as function of time

nel mechanism of the wien-bridge oscillator. First when
nonlinearity is introduced in the negative feed-back path as
Hewlett did the amplitude is controlled and the distortion is
minimized by the complex pole pair having an imaginary
part as constant as possible in the period.

2.3. Chaotic Wien Bridge Oscillator

In 2005 a simple non-autonomous chaotic circuit called
the LMT circuit was reported [10]. In order to create a
simple autonomous chaotic circuit the LMT circuit on fig.
6 may be connected to the wien bridge oscillator. If the
coupling node is the output node of the operational am-
plifier it corresponds to replacement of the ideal sinusoidal
source with the wien bridge oscillator. In this case the feed-
back to the wien bridge circuit is small and chaotic signals
are not observed in the wien bridge circuit but only in the
LMT circuit. In order to obtain close coupling of the two
circuits the LMT circuit is connected to the negative input
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node of the operational amplifier. In this case the amplitude
of the node voltage V(2) is not large enough to activate the
transistor QXX so the diodes and resistor RCL are removed
i.e. the wien bridge oscillator is operating in multi-vibrator
mode.

Figure 6: The LMT circuit. CX1 = 4.7nF, RXX =
994kOhm, CX2 = 0.95nF and QXX = Q2N2222A [10]

Figure 7 shows an almost white noise spectrum in the
frequency range 0 to 100kHz. Figure 8 and fig. 9 shows
two chaotic attractors.

3. Conclusion

Nonlinear circuits may be investigated as time varying
linear circuits. It is demonstrated that multi-vibrator behav-
ior is the kernel mechanism of the wien-bridge oscillator. A
simple autonomous chaotic oscillator based on coupling of
the wien bridge oscillator and the non-autonomous LMT
circuit is presented.

Figure 7: Frequency spectrum of V(1), V(2) and V(3)

Figure 8: Chaotic attractor I(CA) as function of V(CA)

Figure 9: Chaotic attractor, collector current IC(QXX) as
function of collector-emitter voltage V(43)
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