
Long-tailed distribution of excitatory postsynaptic potentials
enhances learning performance of Liquid State Machine

Ibuki Matsumoto†, Sou Nobukawa†‡, Nobuhiko Wagatsuma⋆, and Tomoki Kurikawa∗

† Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275–0016, Japan
‡ National Center of Neurology and Psychiatry, 4-1-1 Ogawahigasicho, Kodaira, Tokyo 187–8551, Japan

⋆ Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510, Japan.
∗ Kansai Medical University, 2-5-1 Hirakata, Shinmachi, Osaka 573–1010, Japan
Email: s1931144ZL@s.chibakoudai.jp (IM), nobukawa@cs.it-chiba.ac.jp (SN)

Abstract—In the cerebral cortex, excitatory postsynap-
tic potentials (EPSPs) exhibit a long-tailed distribution.
EPSPs increase the membrane potentials of postsynaptic
neurons, and it is known that the long-tailed characteris-
tic of EPSPs induces spontaneous activity and stochastic
resonance in the cerebral cortex. Spiking neural networks
with the long-tailed characteristics of EPSPs result in spon-
taneous deterministic dynamics. In this context, we hy-
pothesized that a long-tailed distribution of EPSPs would
improve the learning performance of machine learning.
Therefore, we constructed the liquid state machine (LSM),
which is one type of a reservoir computing model. We lev-
erged a spiking neural network with long-tailed character-
istics of EPSPs as a reservoir in LSM, and then evaluated
the learning performance of LSM via a memory capacity
task. We found that long-tailed distributions of EPSPs en-
hance the high memory capacity. This finding might help
improve the learning performance of LSM.

1. Introduction

Neural networks in the brain, which consist of large-
scale neural populations, realize advanced cognitive func-
tions, such as learning, memory, and perception [1]. Such
cognitive functions are performed by dynamic interac-
tions among many brain areas [2]. These dynamics in-
volve spatio-temporal fluctuations across several hierarchi-
cal scale levels, which can enhance brain functions; this
is known as stochastic resonance [1]. The mechanism for
this enhancement has been investigated using physiologi-
cal, experimental, and computational approaches [3]. In
addition to the multi-scale neural fluctuations, the mecha-
nism to produce microcircuit level fluctuation in the cere-
bral cortex has also been studied [4].

Fluctuations at the microcircuit level are generated by
the interactions among neurons [4]. In the cerebral cor-
tex, neurons fire irregularly even in the absence of a stim-
ulus; the firing rates are no more than 1 Hz, which rep-
resents very low-frequency activity in the brain [4]. This
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neural activity is called “spontaneous activity”. A model-
based study by Teramae et al. demonstrated that this spon-
taneous activity is generated by long-tailed distributions
of excitatory postsynaptic potentials (EPSPs) in the cere-
bral cortex [4]. Experimental studies evaluated the connec-
tions between excitatory neurons in the cortex and found
many weak synaptic connections and a few large-amplitude
synaptic connections [5, 6]. The mapping of EPSPs ampli-
tudes suggests that their distributions follow a lognormal
distribution. In the long-tailed distribution of EPSPs, many
weak synaptic connections help transmit spikes received
from a few strong synapses faithfully; that is, a few strong
synaptic connections play the role of a signal, whereas the
many weak ones as a background noise to raise the base-
line activity. In this way, the coexistence of many weak
synaptic connections and a few strong synaptic connec-
tions creates stochastic resonance and greatly contributes
to information processing in the microcircuits of the cortex.
In the study focusing on the characteristics of long-tailed
EPSPs, the mechanism of stochastic resonance promoted
memory recall in an associative memory (AM) model [7].
In the AM model, internal noise works effectively to re-
trieve the embedded memory pattern [7]. In other words,
spontaneous activity with slow temporal-scale behaviors
makes memory-retrieving neurons prone to depolarization.
Thus, in the case where the neuron-embedded memory pat-
terns receive input through a strong synapse, neurons can
evoke spikes or retrieve memory. In addition, our recent
studies have shown that these neural activities produced by
the long-tailed distribution of EPSPs involve deterministic
properties in spatio-temporal spiking patterns [8, 9]. The
use of these complex spike patterns in machine learning
has been previously proposed [10].

Reservoir computing is a computational framework that
enables high-speed machine learning derived from recur-
rent neural network models. Echo state networks (ESN)
and liquid state machines (LSM) are typical reservoir com-
puting models [11, 12]. These models have a three-layer
structure, consisting of input, reservoir, and output layers,
and the node weights are updated only in the output layer.
Therefore, high-speed learning is possible. LSM is a math-
ematical model that emerged from computational neuro-
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science, and it aims to elucidate the computational proper-
ties of neural circuits. Therefore, a spiking neural network
with biological properties is used in the reservoir layer. As
discussed, the long-tailed distribution of EPSPs is widely
observed in the neural system; hence, we can apply it to
LSM and evaluate its effect on learning performance.

In this context, we hypothesized that the long-tailed dis-
tribution of EPSPs, which plays an important role in sup-
porting brain function, would contribute to the performance
of LSM. To prove this hypothesis, we constructed an LSM
using a spiking neural network that considers the distribu-
tional characteristics of EPSPs that generate spontaneous
activity. The difference between the two models, with and
without the long-tailed distributions of EPSPs, was com-
pared and evaluated in a memory capacity task.

2. Method

2.1. Liquid State Machine

In this study, we built an LSM consisting of a spiking
neural network with a long-tailed distribution of EPSPs.
An overview of the LSM is shown in Fig.1. The dynam-
ics of each neuron follow a leaky integrate-and-fire model.
The LSM consists of an input, reservoir, and output layers.
The input layer consists of Nin =20 excitatory neurons, and
the reservoir layer consists of NE =10000 excitatory neu-
rons and NI =2000 inhibitory neurons. The excitatory neu-
rons in the reservoir layer were classified into 100 neural
populations. The output layer consists of synaptic weight
Wout from the neural populations in the reservoir layer to
the output of LSM.
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Figure 1: Liquid state machine with the long-tailed distri-
bution of EPSPs. A spiking neural network with a random
topology is used in the reservoir layer.

The input neurons receive external input u(t) and provide
spikes to the reservoir neurons. The membrane potential
vi(t)(i = 1, 2, ..., 20) of the input neuron that receives an
external input is as follows:

dvi

dt
= − 1
τin

(vi − VL) + u(t), (1)

if v ≥ Vthr mV, then v(t)→ Vr. (2)

Here, τin is the decay constant of the membrane (τin = 20
[ms]), VL is the leak current (VL = −70 [mV]), and u(t)
is the external input generated by uniform random num-
bers [0, 0.01]. This random value of the external input u(t)
changes every 1 [ms]. Input neurons fire when the mem-
brane potential exceeds the threshold value of Vthr (= −50
[mV]). After spiking, the membrane potentials were reset
to the reset potential Vr (= −60 [mV]). The dynamics of
the membrane potential v j(t) of the excitatory neurons ( j =
1, 2, ...,NE) and inhibitory neurons ( j = NE+1, ...,NE+NI)
in the reservoir layer are as follows:

dv j

dt
= − 1
τm

(v j − VL) − gE, j(v j − VE) − gI, j(v j − VI)

+
∑

i

W in
j, i

∑
S i

δ(t − si). (3)

Here, the decay constant of the membrane τm is 20 [ms]
for excitatory neurons and 10 [ms] for inhibitory neurons,
and the excitatory synaptic current, inhibitory synaptic cur-
rent, and leak current are VE = 0 [mV], VI = −80 [ms],
VL = −70 [mV], respectively. In addition, the input neu-
rons and reservoir neurons were randomly connected with
coupling probabilities of 0.1. δ(t) is a delta function. That
is, when reservoir neurons receive spikes from i-th input
neurons at time t = si, the membrane potentials of the
reservoir neurons increase Win [mV], and we set Win = 1.0
[mV]. Reservoir neurons also have a threshold potential
Vthr and reset potential Vr, according to Eq.(2). The con-
ductance for the excitatory synapse gE, j(t)[ms−1] and in-
hibitory synapse gI, j(t)[ms−1] is as follows:

dgX, j

dt
= −

gX, j

τs
+
∑

k

GX
k

∑
S k

δ(t − sk − dk), X = E, I. (4)

Here, τs is the decay constant of the membrane (τs = 2
[ms]). sk is the spike time of the input from k-th neuron,
and dk is the synaptic delay. In addition, GE

k and GI
k are

the excitatory synaptic weight and the inhibitory synaptic
weight, respectively. That is, when the k-th presynaptic
neuron fires at time t = (sk + dk), the spike weighted by GX

k
is transmitted to the j-th postsynaptic neuron. As previ-
ously stated, EPSP shows a long-tailed distribution defined
as:

p(x) =
exp[−(log x − µ)2/2σ2]

√
2πσx

, (5)

where, x is the amplitude of EPSPs. In this case, we set
the values σ = 1.0 and µ = 1 + log(0.2). We defined
EPSP ≤ 2 [mV] as the weak synaptic weight and EPSP
> 2 [mV] as the strong synaptic weight. This strong weight
is called as the long-tailed part of EPSP. In addition, we
reduced the unrealistic value of EPSPs (≥ 20 [mV]) and
recalculated a new value. Because the EPSP is an ob-
servable value, it must be translated into a synaptic weight
GE

k . We translated EPSP into GE
k based on our previous
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study, which treated the relationship between EPSP and
GE

k : GE
k = VEPSP/100 [8]. The value of the synaptic

weight was set to GE
j = 0.018 (excitatory-to-inhibitory), to

GI
j = 0.002 (inhibitory-to-excitatory), and to GI

j = 0.0025
(inhibitory-to-inhibitory). In addition, the connection prob-
abilities we set were 0.1 (excitatory-to-inhibitory) and 0.5
(others, except for the connection between excitatory-to-
excitatory). Also, the values of synaptic delays were set
randomly between 1-3 [ms] (excitatory-to-excitatory) and
0-2 [ms] (other connections).

In this study, we numerically simulated neural activity
for 50 [s]. To quantify neural activity, we calculated the
number of spikes per 0.1 [ms] in the excitatory neural pop-
ulation. That is, we obtained the average spiking rate rX

(X = 1, 2, 3, ..., 100) [Hz] of the neural population con-
sisting of excitatory neurons that were classified into 100
groups by simulation.

rX(t) = 103 S X(t)
100∆t

, X = 1, 2, 3, ..., 100. (6)

Here, S X is the spike frequency with a bin size of 0.1
[ms] in the X-th neural population (spikes/0.1 [ms]). We
smoothed the rate values rX [Hz] using a Gaussian filter
with a window size of 10 [ms]. To obtain an optimized out-
put corresponding to the input, the LSM must be trained.
Wout was updated using the ridge regression algorithm as
follows:

Wout = ((XTX + αI)−1XT D)T. (7)

Here, α and I indicate the non-negative regularization
coefficient, the identity matrix, respectively. X =

(rX(1), ..., rX(T ))T is the spiking rate of the 100 neural pop-
ulations that state the collection matrix (T×100). T indicate
the learning duration. Furthermore, D = (yd(1), ..., yd(T ))T

denote the desired output collection matrix (T ×1). Finally,
the output y(t) of LSM is given as

y(t) =Wout × X. (8)

In this study, α = 0.01 because the memory capacity is
maximized in both cases with and without strong weights.
One trial of simulation duration consisted of the first tran-
sient period of 500 [ms], the learning duration of T =
49000 [ms], and the last transient period of 500 [ms].

2.2. Evaluation Index

We evaluated the learning performance of LSM in a
memory capacity task [13]. In the memory capacity task,
an input series u(t) is a uniform distribution over [0, 0.01],
and the desired series is the input one τ-time step before.
In other words, the desired signal yd(t) = u(t − τ) was used
to train the input u(t). y(t) is the output series of LSM fol-
lowing Eq.(8). The memory capacity (MCτ) is given by

MCτ =
cov2(uτ, y)
σ2(uτ)σ2(y)

. (9)

Here, cov(uτ, y) indicates the covariance between uτ and
y. σ2 indicates the variance. We set 1 [ms] ≤ τ ≤ 1000
[ms]. MCτ exhibits a value between 0 and 1. When MCτ
approaches 1, LSM retains a large amount of information
from the previous τ step.

3. Result

Figure2 shows the forgetting curve of the τ-delay mem-
ory capacity in cases with and without strong weights. The
LSM with a strong weight exhibited a high memory capac-
ity (MCτ ≈ 0.97) in 0 ≤ τ ≤ 10 [ms], whereas the LSM
without a strong weight exhibited a low memory capacity
(MCτ ≈ 0.48). This means that the characteristics of long-
tailed EPSPs contribute to retaining previously learned in-
formation.

Figure 2: Forgetting curve on delay τ [ms] of memory ca-
pacity task in the case with strong weights (indicated by the
red line) and without strong weights (indicated by the blue
line). The line and the shadow indicate an“ average of for-
getting”curve and standard deviation over 10 trials of the
memory capacity task. Here, external input spikes accord-
ing to the Poisson process with a spiking rate of 5 [Hz] are
given to the all-reservoir neurons in the case without strong
weights. By this effect, the spiking rate of neural popu-
lations become same in comparison with strong synaptic
weights.

4. Discussion

In this study, we hypothesized that the long-tailed char-
acteristics of EPSPs can improve learning performance
based on previous studies on LSM [4, 7, 8]. To verify
this hypothesis, we constructed an LSM by using a leaky
integrate-and-fire spiking neural network with a long-tailed
distribution of EPSPs. The LSM that has both strong and
weak weights at the connection of excitatory-to-excitatory
neurons, can achieve a higher memory capacity than one
without strong weights. We must consider why strong
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synaptic connections achieve high memory capacity. We
know that strong synaptic connections can transmit infor-
mation to various pathways, such as long and short paths,
whereas weak synaptic connections can only transmit in-
formation to short paths. Therefore, if the spiking neural
network involves strong synaptic connections, a recurrent
network is generated; that is, dynamic behavior with a long
decay factor is produced. These dynamics contribute to
enhancing memory capacity (see Fig.2). This finding sug-
gests that strong spatial synapses play an important role in
information processing.

Regarding the future directions of this research, we need
to evaluate the nonlinear time-series prediction for the LSM
that we constructed to increase memory capacity by the
long-tailed distribution of EPSPs in machine learning. In
addition, in this study, we used spiking rate coding for
LSM, but the widely utilized spike coding in LSM is tim-
ing coding [14, 15]. Hence, we must use timing coding for
the learning of LSM in future studies.

In conclusion, we found that the long-tailed distribution
of EPSPs contributes to high memory capacity. This find-
ing may be widely used to enhance the abilities of LSM.
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