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Abstract—In this paper, we investigate the one-to-many
association ability of the Chaotic Complex-valued Multi-
directional Associative Memory (CCMAM). The Chaotic
Complex-valued Multidirectional Associative Memory is
based on the Multidirectional Associative Memory, and
is composed of complex-valued neurons and chaotic
complex-valued neurons. In this model, associations of
multi-valued patterns are realized by using complex-valued
neurons, and one-to-many associations are realized by us-
ing chaotic complex-valued neurons.

1. Introduction

Recently, neural networks are drawing much attention
as a method to realize flexible information processing. Al-
though a lot of associative memories have been proposed,
most of them can deal with only one-to-one associations of
binary/bipolar patterns.

As the model which can deal with one-to-many associa-
tions of multi-valued patterns, the Chaotic Complex-valued
Bidirectional Associative Memory[1][2] and the Chaotic
Complex-valued Multidirectional Associative Memory
(CCMAM)[3] have been proposed. These models are com-
posed of the complex-valued neurons [4] and the chaotic
complex-valued neurons[5]. In these models, associations
of multi-valued patterns are realized by using complex-
valued neurons, and one-to-many associations are realized
by using chaotic complex-valued neurons. In ref.[3], it is
confirmed that the CCMAM can realize one-to-many as-
sociations of multi-valued patterns. Since the CCMAM
is composed of the chaotic complex-valued neurons, one-
to-many association ability is very sensitive to the chaotic
complex-valued neuron parameters. However, the relation
between one-to-many association ability and the chaotic
complex-valued neuron parameters has not been investi-
gated.

In this research, we investigate the relation between the
one-to-many association ability and the chaotic complex-
valued neuron parameters in the Chaotic Complex-valued
Multidirectional Associative Memory.

2. Chaotic Complex-Valued Neuron Model

Here, we explain the chaotic complex-valued neuron
model[5] which is used in the Chaotic Complex-valued

Multidirectional Associative Memory. This model is based
on the complex-valued neuron model [4] and the chaotic
neuron model[6]. The chaotic complex-valued neuron
model is the extended chaotic neuron model in order to
deal with complex-value as internal states and output of
neurons. It is known that the chaotic complex-valued as-
sociative memory composed of chaotic complex-valued
neurons can realize dynamic associations of multi-valued
patterns[5].

The dynamics of the chaotic complex-valued neuron is
given by

x(t + 1) = f

A(t) − α
t∑

d=0

kd x(t − d) − θ
 (1)

(A(t), x(t), θ ∈ C k, α ∈ R)

where x(t) is the output of the neuron at the time t, A(t) is
the external input at the time t, α is the scaling factor of the
refractoriness, k is the damping factor (0 < kr < 1), and θ
is the threshold of the neuron. f (·) is the output function
which is given by

f (u) =
ηu

η − 1.0 + |u| (η ∈ R)

where η is the constant (η > 1).

3. Chaotic Complex-Valued Multidirectional Associa-
tive Memory

Here, we explain the Chaotic Complex-valued Multidi-
rectional Associative Memory (CCMAM)[3].

3.1. Structure

The Chaotic Complex-valued Multidirectional Associa-
tive Memory has more than two layers as similar as the con-
ventional Multidirectional Associative Memory[7]. Figure
1 shows the structure of this model which has three layers.
Each layer has two parts; (1) Key Input Part composed of
complex-valued neurons and (2) Context Part composed of
chaotic complex-valued neurons.

3.2. Learning Process

Generally, the associative memory which is trained by
the correlation matrix can not deal with one-to-many as-
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Figure 1: Structure of CCMAM.

sociations because the stored common data cause super-
imposed patterns. In the Chaotic Bidirectional Associa-
tive Memory (CBAM)[8], each training pair is memorized
together with its own contextual information in order to
memorize the training set including one-to-many relations.
In the CCMAM, the same method is used to memorize the
training set including one-to-many relations.

In the CCMAM, the patterns with its own contextual in-
formation are memorized by the orthogonal learning. The
connection weights from the layer y to the layer x, wxy and
the connection weights from the layer x to the layer y , wyx

are given by

wxy = Xy(X∗xXx)−1X∗x (2)
wyx = Xx(X∗y Xy)−1X∗y (3)

where * shows the conjugate transpose, and −1 shows the
inverse. Xx and Xy are the training pattern matrices which
are memorized in the layer x and the layer y, and are given
by

Xx = {X(1)
x , · · · , X(p)

x , · · · , X(P)
x } (4)

Xy = {X(1)
y , · · · , X(p)

y , · · · , X(P)
y } (5)

where X(p)
x is the pth pattern which is stored in the layer x,

X(p)
y is the pth pattern which is stored in the layer y and P

is the number of the training pattern sets.

3.3. Recall Process

Since we assume that contextual information is usually
unknown for users, in the recall process of the CCMAM,
only the Key Input Part receives input. For example, in the
training sets which is given by

{(X1 CX1,Y1 CY1, Z1 CZ1),
(X1 CX2,Y2 CY2, Z2 CZ2),
(X2 CX3,Y3 CY3, Z3 CZ3)}, (6)

X1 is used as an input to the CCMAM. Here, Cxx (such
as CX1 and CY1) shows the contextual information. In the
CCMAM, when X1 is given to the network as an initial in-
put, since the chaotic complex-valued neurons in the Con-
textual Information Part change their states by chaos, we
can expect that they can realize one-to-many associations
as follows:

(X1 0, ?, ?)→ · · · → (X1 CX1,Y1, Z1)→ · · ·
→ (X1 CX2,Y2, Z2)→ · · · (7)

The recall process of the CCMAM has the following pro-
cedures when the input pattern is given to the layer x.
Step 1 : Input to Layer x

The input pattern is given to the layer x.
Step 2 : Propagation from Layer x to Other Layers

When the pattern is given to the layer x, the information
are propagated to the Key Input Part in the other layers. The
output of the neuron k in the Key Input Part of the layer y
(y , x), xy

k(t) is given by

xy
k(t) = f


N x∑

j=1

wyx
k j x

x
j (t)

 (8)

where N x is the number of neurons in the layer x, wyx
k j is the

connection weight from the neuron j in the layer x to the
neuron k in the layer y, xx

j (t) is the output of the neuron j
in the layer x at the time t. And f (·) is the output function
which is given by Eq.(2).
Step 3 : Propagation from Other Layers to Layer x

The output of the neuron j in the Key Input Part of the
layer x xx

j(t + 1) is given by

xx
j (t + 1) = f


M∑

y,x


ny∑

k=1

wxy
jk xy

k(t)

 + vA j

 (9)

where M is the number of layers, ny is the number of neu-
rons in the Key Input Part of the layer y, wxy

jk is the connec-
tion weight from the neuron k in the layer y to the neuron j
in the layer x, v is the connection weight from the external
input, and A j is the external input (See 3.4) to the neuron j
in the layer x.

The output of the neuron j of the Contextual Information
Part in the layer x, xx

j(t + 1) is given by

xx
j (t + 1) = f


M∑

y,x


ny∑

k=1

wxy
jk

t∑

d=0

kd
mxd

k (t − d)



−α
t∑

d=0

kd
r xx

j (t − d)

 (10)

where km and kr are damping factors. And, α is the scaling
factor of the refractoriness.
Step 4 : Repeat

Steps 2 and 3 are repeated.
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3.4. External Input

In the CCMAM, the external input A j is always given so
that the key pattern does not change into other patterns.

If the pattern is given to the layer x and the initial input
does not include noise, we can use the initial input pattern
A j = xx

j (0) as the external pattern. However, the initial
input pattern sometimes includes noise. So we use the fol-
lowing pattern x̂x

j (tin) when the network becomes stable at
tin as an external input.

tin = min

t



nx∑

j=1

(x̂x
j (t) − x̂x

j (t − 1)) = 0

 (11)

where nx is the number of neurons in the Key Input Part of
the layer x. x̂x

j (t) is the quantized output of the neuron j in
the layer x at the time t, and is given by

x̂x
j (t) = arg min(ωs − xx

j )
∗(ωs − xx

j ) (12)
(s = 1, 2, ..., S − 1)

where S is the number of states and ω is given by

ω = exp (i2π/S ) (13)

where i is the imaginary unit.

4. Computer Experiment Results

Here, we examined the relation between the one-to-
many association ability and the chaotic complex-valued
neuron parameters in the Chaotic Complex-valued Multi-
directional Associative Memory.

4.1. Relation between One-to-Many Association Abil-
ity and Damping Factor km

Figure 2 show the relation between the one-to-many as-
sociation ability and the damping factor km in the CCMAM.
In this experiment, the network which has 3∼5 layers com-
posed of 500 neurons (400 neurons for Key Input Part and
100 neurons for Context Part) and 4-valued random pat-
terns in 1-to-4 relation were memorized was used. As
shown in this figure, high recall rate can be obtained if the
appropriate pair of damping factors km and kr is set.

4.2. Relation between One-to-Many Association Abil-
ity and Damping Factor kr

Figure 3 show the relation between the one-to-many as-
sociation ability and the damping factor kr in the CCMAM.
In this experiment, the network which has 3∼5 layers com-
posed of 500 neurons (400 neurons for Key Input Part and
100 neurons for Context Part) and 4-valued random pat-
terns in 1-to-4 relation were memorized was used. As
shown in this figure, high recall rate can be obtained if the
appropriate pair of damping factors km and kr is set.
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(c) 5-Layered Network (α = 2.0)

Figure 2: Relation between One-to-Many Association
Ability and Damping Factor km.

4.3. Relation between One-to-Many Association Abil-
ity and Scaling Factor α

Figure 4 show the relation between the one-to-many as-
sociation ability and the scaling factor α in the CCMAM.
In this experiment, the network which has 3∼5 layers com-
posed of 500 neurons (400 neurons for Key Input Part and
100 neurons for Context Part) and 4/8/16-valued random
patterns in 1-to-4(∼6) relation were memorized was used.
As shown in this figure, 4-valued patterns can be recalled
easier than 8/16-valued patterns in the CCMAM. And the
range of the scaling factor α which can give high recall
rates is wider when 4-valued patterns are memorized than
when 8/16-valued patterns are memorized.

- 376 -



0.0

0.2

0.4

0.6

0.8

1.0

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

R
ec

al
l R

at
e

0.88
0.89
0.90

���

���

(a) 3-Layered Network

0.0

0.2

0.4

0.6

0.8

1.0

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

R
ec

al
l R

at
e

0.88
0.89
0.90

���

���

(b) 4-Layered Network

0.0

0.2

0.4

0.6

0.8

1.0

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

R
ec

al
l R

at
e

0.88
0.89
0.90

���

���
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Figure 3: Relation between One-to-Many Association
Ability and Damping Factor kr.

5. Conclusion

In this paper, we investigated the relation between the
one-to-many association ability and the chaotic complex-
valued neuron parameters in the Chaotic Complex-valued
Multidirectional Associative Memory. We carried out a
series of computer experiments and confirmed that the
one-to-many association ability is very sensitive to chaotic
complex-valued neuron parameters, especially, the scaling
factor of the refractoriness α.
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(d) 1-to-4 Patterns (M=4)
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(e) 1-to-5 Patterns (M=4)
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(g) 1-to-4 Patterns (M=5)
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(h) 1-to-5 Patterns (M=5)
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(i) 1-to-6 Patterns (M=5)
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(j) 1-to-4 Patterns (M=6)
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(k) 1-to-5 Patterns (M=6)
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(l) 1-to-6 Patterns (M=6)

Figure 4: Relation between One-to-Many Association
Ability and Scaling Factor α (km=0.89, kr=0.92).
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