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Abstract—This paper describes a method to decompose
symmetric almost periodic oscillations in a three-phase cir-
cuit based on symmetries. The decomposition classifies
frequency components exclusively and we calculate the bi-
furcation diagram of almost periodic oscillations using 2-
dimensional harmonic balance.

1. Introduction

Symmetries provides crucial clue to understand general
mechanism for nonlinear systems. Specifically, the sym-
metries of a system can be used for finding typical modes.
That is, if a system has symmetries, we can define invariant
subspaces and find out typical periodic modes [1, 2]. This
paper extends the concept to almost periodic oscillations
and proposes a method to decompose symmetric almost pe-
riodic oscillations in a symmetric three-phase circuit.

The symmetric three-phase circuit in Fig.1 is a fun-
damental model of power systems. The nonlinearity
of the inductors generates many kinds of nonlinear os-
cillations, e.g., subharmonic oscillations[3], asymmetric
oscillations[4], cnoidal waves[5] and ILMs[6]. The gener-
ation of those periodic oscillations is clarified by symme-
tries in [2]. We consider almost periodic oscillations and
decompose the oscillations by the symmetries.

First, we show the symmetry of the three-phase cir-
cuit and define the symmetric almost periodic oscillations.
Next, we propose a method to decompose the oscillations.
Further, we calculate bifurcation diagram of the almost pe-
riodic oscillations using 2-dimensional harmonic balance.

2. Equation of Three-Phase Circuit

The normalized equation of the three-phase circuit in
Fig.1 is

d
dt

(
ψabc
uabc

)
=

( −Aabcuabc +eabc− Rabciabc

AT
abciabc

)
. (1)

Aabc≡


0 1 −1
−1 0 1
1 −1 0

 ,

ψabc ≡ (ψa, ψb, ψc)T ∈ R3

uabc ≡ (ua,ub,uc)T ∈ R3

Rabc ≡ AT
abcAabcR+ I r ∈ R3

iabc(ψabc)≡ (i(ψa), i(ψb), i(ψc))T ∈ R3

eabc(t) ≡ Eabc(cos(ωet), cos(ωet− 2π
3 ), cos(ωet+ 2π

3 ))T,
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Figure 1: Three-phase circuit and nonlinear characteristics
of flux interlinkagesi(ψ).

whereψabc and uabc are the flux interlinkages of the in-
ductors and voltages of the capacitors, respectively. The
I denotes unit matrix, and (∗)T andR denote transposition
and the set of real numbers, respectively.R, r, ωe repre-
sent normalized circuit parameters which correspond to Y-
connected resistors,∆-connected resistors, and angular fre-
quency of the voltage sources, respectively. We assume that
the characteristics of the flux interlinkagesi(ψ) are repre-
sented by monotone increasing odd function.

In order to describe the symmetry of the circuit easily,
we introduce phasor vectorEabc and rewrite (1) by the fol-
lowing autonomous equation:

d
dt


ψabc
uabc

Eabc

 =


−Aabcuabc+ Re [Eabc] − Rabciabc

AT
abciabc

jωeEabc

 ,(2)

where Eabc ≡ (Ea,Eb,Ec)T ∈ C3, theC denotes the set
of complex numbers, j is imaginary unit and Re[·] denotes
the real part of·. The argument of the initial valueEabc(0)
satisfies


arg[Eb(0)] − arg[Ea(0)]
arg[Ec(0)] − arg[Eb(0)]
arg[Ea(0)] − arg]Ec(0)]

 = −k31, k3 ≡ 2π
3
. (3)

where arg[·] ∈ T denotes the argument, theT denotes torus
and1 = (1,1,1)T.

Further, we rewrite (2) as

dxabc

dt
= f abc(xabc), (4)

wherexabc = (ψT
abc,u

T
abc, E

T
abc)

T.
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3. Symmetries of Three-Phase Circuit

In order to describe the symmetries of the three-phase
circuit, we introduce the following permutations ˇγ:

γ̌ =

(
a b c
χa χb χc

)
,
χn ∈ {a,b, c} (n ∈ {a,b, c}),
χn , χm (n , m ∈ {a,b, c}). .

For example, a cyclic permutation is represented by

č3 ≡
(

a b c
b c a

)
. (5)

The action ˇc3 satisfies the following commutativity:

č3 f abc(xabc) = f abc(č3xabc). (6)

This relation shows that the three-phase circuit has the
cyclic symmetry. The action of ˇc3 can be represented also
by the following matrixc3 ∈ R9 × R9 :

c3 ≡


c′3 0 0
0 c′3 0
0 0 c′3

 , c′3 ≡


0 1 0
0 0 1
1 0 0

 . (7)

The matrixc′3 has three eigenvalues 1,a,a2 wherea ≡ eik3

and the eigenvectors are

w′0 ≡


1
1
1

 , w′+ ≡


1
a
a2

 , w′− ≡


1
a2

a

 , (8)

respectively. In the same way, the eigenvectors ofc3 are
w0 ≡ (w′T0 ,w

′T
0 ,w

′T
0 )T , w+ ≡ (w′T+ ,w

′T
+ ,w

′T
+ )T and w− ≡

(w′T− ,w
′T
− ,w

′T
− )T , respectively.

Next, we consider inversion symmetry based on the odd
symmetry of the functioni(ψ):

x̃abc = ǐxabc = −xabc (9)

The actioňi satisfies

ǐ f abc(xabc) = f abc(ǐxabc). (10)

This relation shows that the three-phase circuit has the in-
version symmetry. The actioňi can be represented also by
the following matrixi ∈ R9 × R9

i ≡ −I (11)

whereI denotes 9× 9 unit matrix and the eigenvalue ofi
equals−1.

From the 2 symmetries, the three-phase circuit has the
symmetry with respect to the commutative groupΓ̌

Γ̌ ≡
{

ě, č3, č2
3, ǐ, ǐ č3, ǐ č2

3,
}
. (12)

Subgroups of the group̌Γ are listed in Tab.1 and the lattice
of the subgroups is shown in Fig.2.

Table 1: Subgroup of̌Γ
Order 1 Ě ≡ {ě}
Order 2 Ǐ ≡

{
ě, ǐ

}

Order 3 Č3 ≡
{
ě, č3, č2

3

}

Order 6 Γ̌ ≡
{
ě, č3, č2

3, ǐ, ǐ č3, ǐ č2
3

}

C3

E

Γ

I

Figure 2: Lattice of symmetries in three-phase circuit

4. Decomposition of Almost Periodic Oscillation

4.1. Definition of symmetric almost periodic oscillation

Almost periodic oscillation with normalized phaseθ ∈
T2 on 2 dimensional torus is defined byx̂(θ) andxabc(t) is
represented by

xabc(t) = x̂(θ), θ̇ = ω, ω ∈ R2, (13)

whereω is angular frequency of torus.

Let us consider a subgroup̌H ⊂ Γ̌. If an almost periodic
oscillation x̂(θ) satisfies

Ȟ =
{
γ̌ ∈ Γ̌ | γ̌{x̂(θ)} = {x̂(θ)}

}
(14)

for all the actions ˇγ ∈ Ȟ, the almost periodic oscillation
has spatio-temporal symmetry[1]. This relation shows that
the Ȟ-action preserves the trajectory ofx̂(θ) and an action
γ̌ causes only a shiftk ∈ T2:

∀θ ∈ T2, γ̌x̂(θ) = x̂(θ − k). (15)

We denote the correspondence between ˇγ andk by a map
k = Θ(γ̌). An example ofk = Θ(γ̌) for the groupΓ̌ is
shown in Tab.2.

Table 2: Example of the mapk = Θ(γ̌)
γ̌ ě č3 č2

3 ǐ ǐ č3 ǐ č2
3

k
(

0
0

) (
2π
3
0

) (
4π
3
0

) (
π
π

) (
5π
3
π

) (
π
3
π

)
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4.2. Decomposition of oscillation

We represent̂x(θ) by 2-dimensional Fourier series ex-
pansion

x̂(θ) =
∑

j∈Z2

X j exp(jjTθ) + c.c., X j ∈ C9, (16)

where c.c. represents complex conjugate andZ denotes the
set of integers. Then, the 2-dimensional Fourier series ex-
pansion of Eq.(15) derives

γ̌ ∈ Ȟ, γ̌X j = exp(jjT k)X j . (17)

This equation shows that the vectorX j is in the eigenspace

of the action ˇγwith respect to the eigenvalueλ ≡ exp(jjT k).
For example, the cyclic symmetry ˇγ = č3 has three eigen-
values 1,a,a2 and the X j can be classified into three
eigenspacesw0, w+ andw−. That is, from Tab.2 we can
classify the vectorj into three set

κ0 ≡
{
j ∈ Z2 | j1 mod 3= 0

}
.

κ+ ≡
{
j ∈ Z2 | j1 mod 3= 1

}
.

κ− ≡
{
j ∈ Z2 | j1 mod 3= −1

}
.

(18)

In the case of the inversion symmetry ˇγ = ǐ, the eigenvalues
are−1 and thej belongs to the setκodd:

κodd ≡
{
j ∈ Z2 | j1 + j2 mod 2= 1

}
. (19)

As a result, the flux̂ψabc : T2 7→ R3 can be decomposed
as

ψ̂abc(θ) =
∑

j∈κ0∩κodd

Ψ0, j1, j2w
′
0 exp(i(j1θ1 + j2θ2) )

+
∑

j∈κ+∩κodd

Ψ+, j1, j2w
′
+ exp(i(j1θ1 + j2θ2) )

+
∑

j∈κ−∩κodd

Ψ−, j1, j2w
′
− exp(i(j1θ1 + j2θ2) ) + c.c. .(20)

We call the components inw′0,w
′
+,w

′
− common mode, for-

ward mode and backward mode, respectively. This decom-
position (20) indicates that the spectra are also decomposed
exclusively in the modes.

4.3. Example of decomposition

In order to confirm the decomposition, we apply the
method to an almost periodic oscillation withΓ̌ symmetry
shown in Fig.3. The figure shows the waveform of fluxes
ψa(t), ψb(t), ψc(t). The frequency components of the fluxes
and the decomposed frequency components are shown in
Fig.4 and Fig.5. The pattern diagram of Fig.5 is shown
in Fig.6, whereω0 andω+ correspond toj = (0,1)T and
j = (1,0)T, respectively. The common, forward and back-
ward modes enables the exclusive decomposition of the fre-
quency components.
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Figure 3: Almost periodic oscillation witȟΓ symmetry.
(i(ψ) = ψ + 3.8ψ7, ωe = 7,T = 2π/ωe,Eabc = 2.0,R =

0.01, r = 0.01.)
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Figure 4: Frequency components of fluxψ̂abc

5. Bifurcation Analysis by 2-Dimensional Harmonic
Balance

Almost periodic oscillations can be analyzed by 2-
dimensional harmonic balance method [7]. Although the
method requires large number of frequency components,
the proposed method decomposes the spectra exclusively
and reduces the number of unknowns.

Table.3 and Fig.7 show the considered frequency com-
ponents for the harmonic balance. The bifurcation diagram
obtained by the method is shown in Fig.9. The lines A1

and A2 represent the bifurcation diagram of periodic oscil-

Table 3: Frequencies for harmonic balance
j1 j2

0 C1 0 1
C2 3 0

positive F1 1 0
F2 1 2
F3 1 -2

negative B1 2 -1
B2 2 1
B3 2 -3
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Figure 5: Decomposed frequency components of fluxψ̂abc
by the common, forward and backward modesw′0,w

′
+,w

′
−.
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Figure 6: Pattern diagram of frequency components in
Fig.5. Theω0 and ω+ corresponds toj = (0,1)T and
j = (1,0)T, respectively.
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Figure 7: Considered frequency components for harmonic
balance method.

lation shown in Fig. 8. The line A3 shows the bifurcation
diagram of the almost periodic oscillation. The bifurcation
diagram succeeds to calculate the Neimark Sacker bifurca-
tion points N1 and N2 where the almost periodic oscillation
is generated.

6. Conclusion

We showed that symmetric almost periodic oscillations
can be decomposed into the subspaces which correspond
to the eigenspaces. Using the decomposition, we classified
also the frequency components of the almost periodic oscil-
lation exclusively. Further, applying the decomposition to
2-dimensional harmonic balance method, we obtained the
bifurcation diagram of the almost periodic oscillation.

Although the decomposition is shown in the three-phase
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Figure 8: Periodic fundamental harmonic oscillation.
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Figure 9: Bifurcation diagram of the fundamental periodic
and almost periodic oscillations. (E0αβ = 3Eabc/

√
6.) N1

and N2 represent the Neimark Sacker bifurcation points
where the almost periodic oscillation is generated.

circuit, the method can be applied to symmetric almost pe-
riodic oscillations in general systems.
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