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Abstract—This paper describes a method to decompose
symmetric almost periodic oscillations in a three-phase cir-
cuit based on symmetries. The decomposition classifies
frequency components exclusively and we calculate the bi-
furcation diagram of almost periodic oscillations using 2-
dimensional harmonic balance.
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1. Introduction — Current i
i(W,)

Symmetries provides crucial clue to understand general
mechanism for nonlinear systems. Specifically, the SynF_igure 1: Three-phase circuit and nonlinear characteristics
metries of a system can be used for finding typical mode8f flux interlinkages ().

Thatis, if a system has symmetries, we can define invariant

subspaces and find out typical periodic modes [1, 2]. This

paper extends the concept to almost periodic oscillationghere .. and uapnc are the flux interlinkages of the in-
and proposes a method to decompose symmetric almost jgictors and voltages of the capacitors, respectively. The
riodic oscillations in a symmetric three-phase circuit. | denotes unit matrix, and’ andR denote transposition

The symmetric three-phase circuit in Fig.1 is a funand the set of real numbers, respectiveR.r, we repre-
damental model of power systems. The nonlinearitgent normalized circuit parameters which correspond to Y-
of the inductors generates many kinds of nonlinear ogonnected resistora-connected resistors, and angular fre-
cillations, e.g., subharmonic oscillations[3], asymmetriguency of the voltage sources, respectively. We assume that
oscillations[4], cnoidal waves[5] and ILMs[6]. The gener-the characteristics of the flux interlinkagiég) are repre-
ation of those periodic oscillations is clarified by symmesented by monotone increasing odd function.
tries in [2]. We consider almost periodic oscillations and In order to describe the symmetry of the circuit easily,
decompose the oscillations by the symmetries. we introduce phasor vect@,,. and rewrite (1) by the fol-

First, we show the symmetry of the three-phase citowing autonomous equation:
cuit and define the symmetric almost periodic oscillations.
Next, we propose a method to decompose the oscillations. "
Further, we calculate bifurcation diagram of the almost pe- d [ abe } _

Al
JweEane

Uabc

Eabc

—Aabdlanc + Re [Eand — Randabe
riodic oscillations using 2-dimensional harmonic balance. dt 2)

2. Equation of Three-Phase Circuit where Eape = (Ea, Ep, Ec)T € C3, the C denotes the set
of complex numbers, j is imaginary unit and Refenotes
The normalized equation of the three-phase circuit ithe real part of. The argument of the initial valuEapd0)
Fig.1lis satisfies

d Vabe | _ [ —Aabddabc +€apc— Rabd abc 1 arg[Ep(0)] - arg[Ea(0)] o
a( Uabe )_( i ) @) arglEc(0)] ~ argEp(0)] | = ~ksl, ks=—.  (3)

AT b
abc'abc
arg[Ea(0)] — arg]Ec(0)]

0 1-1
Aabc = [—1 01 ] where arg] € T denotes the argument, tfiedenotes torus
1-10 andl = (1,1, 1)".
Yare = Wa o) €R3 Further, we rewrite (2) as
Uabc = (U, Up, UC)T eR3 dXap
Ranc = AgbcAabcR‘i' Ir e R3 det‘ £ = f abd Xabo), (4)
iabdWand = ((¥a). 1Y), i(yc))" € R
Candt) = EabdCOS(et), COSEet — %), cOs@et+ )T, WhereXave = (apc Uzpe Edno -
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3. Symmetries of Three-Phase Circuit .
Table 1: Subgroup df

In order to describe the symmetries of the three-phase Order 1 E ={(§
circuit, we introduce the following permutatioms ~ Order 2 I =lg i}
Order3 C; =18 &, 62}
. a b ¢ efab,cl(ne{ab,c)), » ..
=( ) An ( ) Order6 I =1{& &, &, I, i, |é§}

Xa Xo Xc | xn#xm(#me{abc}). °

For example, a cyclic permutation is represented by

égE(a b C). (5)

b ¢ a
The actioncs satisfies the following commutativity:
C3f apdXabd = fapdCaXand)- (6)

This relation shows that the three-phase circuit has the

cyclic symmetry. The action af;'can be represented also  Figure 2: Lattice of symmetries in three-phase circuit
by the following matrixcs € R® x R? :

0 0 c 1 00

¢, 0 0 010
cs=| 0 ¢c; 0], =] 0 0 1]. (7) 4. Decomposition of Aimost Periodic Oscillation
3

, ) ) «. 4.1 Definition of symmetric almost periodic oscillation
The matrixc; has three eigenvaluesd a® wherea = €

and the eigenvectors are Almost periodic oscillation with normalized phages
T? on 2 dimensional torus is defined &y®) and xapdt) is

1 1 : represented b
wo=| 1], w=|lal w=|la| (@ P y
1 a? a

Xandt) = X(0), 0 = w, w € R?, (13)
respectively. In the same way, the eigenvectorgoére
Wo = (W, wg,wo)T, wy = (wwT,w)T andw. = wherew is angular frequency of torus.
wT.wT wT)T, respectively. Let us consider a subgroup c I'. If an almost periodic

Next, we consider inversion symmetry based on the odgkillation(6) satisfies
symmetry of the functiom(y):

fane = Xabe = —Xane ©) H = {7 € T171%(6)) = (%(6)} (14)
The action satisfies for all the actionsy”c H, the almost periodic oscillation
v . has spatio-temporal symmetry[1]. This relation shows that
1T apdXabd) = fapdiXand)- (10)  theH-action preserves the trajectory X{¥) and an action

0% I hi 2
This relation shows that the three-phase circuit has the ily]_causes only a shik € T
version symmetry. The actidrcan be represented also by v 5 .
the following matrixi € R® x R® 6 € T, yX(6) = X(6 - k). (15)
P= - (11) We denote the correspondence betwgandk by a map

) . ) .k =0(%). An example ofk = ©(y) for the groupl is
wherel denotes % 9 unit matrix and the eigenvalue of ghown in Tab.2.

equals-1.
From the 2 symmetries, the three-phase circuit has the
symmetry with respect to the commutative graup
Table 2: Example of the malp= O(3)

r={e & & 1 it i&} (12 y| ¢& ¢ & i i3 i

N win w%

|

0 Z & n 5
. K 3 3 3
Subgroups of the groupare listed in Tab.1 and the lattice ( 0) ( 0 ) ( 0 ) (ﬂ ) ( n ) (
of the subgroups is shown in Fig.2.
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4.2. Decomposition of oscillation

We represenk(d) by 2-dimensional Fourier series ex-

Flux c Fluxb Flux a

pansion
%(0) = X exp(jj'é) + cc., X;iecC®, (16) WLAARRARA fu\‘/m“ﬂ T ﬂ M M”M T
JZZ: j j A
10T 20T 30T 40T
where c.c. represents complex conjugate Ziénotes the Time
set of integers. Then, the 2-dimensional Fourier series ex-
pansion of Eq.(15) derives Figure 3: Almost periodic oscillation with’ symmetry.
H 7
S el oYX = FTIX 17y (@) = v +38) . we = 7.T = 21/we, Eape = 20,R =
Y€ H. yXj =exp(j k)X @7 6oLr =001)

This equation shows that the vecboi is in the eigenspace

of the actiony'with respect to the eigenvalue= exp(jj k).
For example, the cyclic symmetgy = €3 has three eigen-
values la,a® and the X; can be classified into three
eigenspaces/p, W, andw_. That is, from Tab.2 we can
classify the vectoj into three set

Fluxb Fluxa

Ko {jez?]j1 mod 3=0}.
ke = {je€z?|j1 mod 3=1}. (18)
{iez?1j1 mod 3=-1}.

Flux c

Lk Ny il

1 2 3

K_

In the case of the inversion symmeiry="i, the eigenvalues
are—1 and thej belongs to the setqq:

normalized angular frequency

. . . Figure 4: Frequency components of fig
koad = {i€Z?lja+j2 mod2=1}. (19) 9 quency comp Wi

As a result, the flux,,. : T2 — R3 can be decomposed

as 5. Bifurcation Analysis by 2-Dimensional Harmonic
bad® = > i whexp(i(iad + 26) ) Balance
Jexokoda Almost periodic oscillations can be analyzed by 2-
+ Z Py iniaWe €XP(i(j161 + j262) ) dimensional harmonic balance method [7]. Although the
ek Nieog method requires large number of frequency components,

. . the proposed method decomposes the spectra exclusivel
+ Z P_ i, W exp(i(j161 + j262) ) + c.c. (20) and?ed%ces the number of unFIJmowns. P Y
Jek-Nkaua Table.3 and Fig.7 show the considered frequency com-
We call the components i, w,,w.. common mode, for- ponents for the harmonic balance. The bifurcation diagram
ward mode and backward mode respectively. This decorfibtained by the method is shown in Fig.9. The lines A
position (20) indicates that the spectra are also decompos@id A represent the bifurcation diagram of periodic oscil-
exclusively in the modes.

4.3. Example of decomposition Table 3: Frequencies for harmonic balance
In order to confirm the decomposition, we apply the It J2

method to an almost periodic oscillation withsymmetry 0 G| 0 1

shown in Fig.3. The figure shows the waveform of fluxes &3 0

Va(t), vp(t), wc(t). The frequency components of the fluxes positve hH | 1 O

and the decomposed frequency components are shown in F 1 2

Fig.4 and Fig.5. The pattern diagram of Fig.5 is shown Fs | 1 -2

in Fig.6, wherewg andw, correspond tgj = (0,1)" and negatve B | 2 -1

i = (1,0)7, respectively. The common, forward and back- B| 2 1

ward modes enables the exclusive decomposition of the fre- Bs| 2 -3

quency components.
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Figure 5: Decomposed frequency components ofzﬂ!,{;g N,
by the common, forward and backward mos\sw, , w’ ] I e
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Figure 6: Pattern diagram of frequency components in Source voltage Egyp
Fig.5. Thewg and w, corresponds tg = (0,1)" and
i = (1,0)T, respectively. Figure 9: Bifurcation diagram of the fundamental periodic

and almost periodic oscillationsEf,s = 3Eanc/ V6.) Ny
and N represent the Neimark Sacker bifurcation points
where the almost periodic oscillation is generated.
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circuit, the method can be applied to symmetric almost pe-
riodic oscillations in general systems.
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