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Abstract—In population consists of many selfish play-
ers, the purpose of each player often conflicts with the total
purpose of the population. In order to govern the popula-
tion, the ”government” imposes a capitation tax and offers
a subsidy. To describe dynamical evolutions of a popu-
lation state which is a distribution of strategies in such a
population, replicator dynamics with a capitation tax and a
subsidy has been proposed. The model deals with interac-
tions of players in a single population. However, some so-
cial or biological systems consists of multiple populations.
In such a situation, games are played between two players
who belong to not only the same population but different
populations. In this paper, we extend the model to describe
changes of multiple populations’ states.

1. Introduction

In evolutionary games, the purpose of each player often
conflicts with the total purpose of the population because
of his/her selfish behavior. In order to govern the popula-
tion, the ”government” collects payoffs as capitation taxes
and reallocates them as subsidies. Kanazawa et al. has
proposed replicator dynamics with a capitation tax and a
subsidy to model such a situation [1]. In this model, the
government is willing to lead the population to a desirable
target state. However, some social or biological systems
consist of multiple populations. In such a situation, games
are played between two players who belong to not only the
same population but different populations. So, we have to
deal with interactions between players in multiple popula-
tions.

In this paper, we propose multipopulation replicator dy-
namics with a capitation tax and a subsidy. To control all
populations to a desirable target state, the government im-
poses a capitation tax and offers a subsidy depending on
the target states to players in each population. Moreover,
we discuss conditions of the capitation tax and the sub-
sidy which make the target state asymptotically stable in
our model.

2. Multipopulation Replicator Dynamics with Capita-
tion Tax and Subsidy

Several concepts of multipopulation evolutionary games
have been proposed [2, 3, 4]. In this paper, we employ a
model proposed by Taylor [3].

Suppose that I = {1, . . . , n} is a set of populations and
Pi is the number of players who belong to population i.
Let S i = {1, . . . , ni} (i ∈ I) be a set of pure strategies of
the population i and N =

∑
i∈I ni. Suppose that xi

k ∈ R
(i ∈ I, k ∈ S i, 0 ≤ xi

k ≤ 1) is the proportion of players with
a strategy k in the population i. xi = (xi

1, x
i
2, . . . , x

i
ni )T is

a population state which describes a distribution of strate-
gies in the population i. A population state combination of
all populations is denoted by x = (x1T

, x2T
, . . . , xnT )T , we

call it population state of all populations for simplicity. In
addition, let ∆i ⊂ Rni

and ∆ = ×i∈I∆
i be spaces of popula-

tion states of the population i and all populations, respec-
tively. Denoted by bd(∆) and int(∆) are the boundary and
the interior of ∆, respectively. C(xi)(:= {i ∈ S i|xi

k > 0})
is an index set of all nonzero elements of xi. Assume
that a player’s payoff depends on the current population
state of all populations. In this paper, we define a payoff
function of a player with the strategy k in the population
i by ui(ei

k, x) = ei
kΣ j∈I Ai jx j(x ∈ ∆), where ei

k is the ni-
dimensional unit vector such that the kth element equals
1 and Ai j ∈ Rni×n j

is the payoff matrix of the population i
against the population j. An average payoff of the popula-
tion i is given by ui(xi, x). A state x∗ ∈ ∆ is called a Nash
equilibrium if ui(xi∗, x∗) ≥ ui(xi, x∗) holds for all xi ∈ ∆i

and for all i ∈ I. Replicator dynamics which describes evo-
lutions of population states is given by

ẋi
k = {ui(ei

k, x) − ui(xi, x)}xi
k. (1)

This equation shows that the number of players with strat-
egy k increases when they earn larger payoffs than the av-
erage payoff in the population i.

In our model, the government imposes a capitation tax
ti on each player and offers a subsidy ciPi to population
i. Let x∗ = (x1∗T , x2∗T , . . . , xn∗T )T be a target state of the
government, where xi∗ = (xi∗

1 , . . . , x
i∗
ni )T . Let Pi

k > 0 be
the number of players who adopt strategy k in population
i. We assume that a subsidy for player with strategy k in
population i depends on Pi

k. The offered subsidy ciPixi∗
k

is equally-divided to players with strategy k. Then, each
player earns the following subsidy:

ciPixi∗
k

Pi
k

= ci xi∗
k

xi
k

. (2)

Thus, the payoff function with the capitation tax and the
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subsidy is given by

ũi(ei
k, x) = ui(ei

k, x) − ti + ci xi∗
k

xi
k

, (3)

and the average payoff of population i is given by

ũi(xi, x) = ui(xi, x) − ti + ci. (4)

Then we obtain multipopulation replicator dynamics with
the capitation tax and the subsidy as follows:

ẋi
k = {ui(ei

k, x) − ui(xi, x)}xi
k + ci(xi∗

k − xi
k). (5)

Eq. (5) can be interpreted as a controlled system with the
state feedback which is given by ci(xi∗

k − xi
k). So, ci can be

considered as a feedback gain.

3. Stability Conditions of the Target State

In this section, we discuss stability conditions of the tar-
get state in Eq. (5).

Proposition 1 (Invariance Under a Local Shift)
Equation (5) is invariant under any local shift of the
payoff matrix Ai j for all i, j ∈ I.

Note that the local shift of Ai j is the addition of a constant
to all elements of a column of Ai j. This proposition allows
us to assume that each element of Ai j is non-negative for
all i, j ∈ I without loss of generality.

Proposition 2 (Equilibrium Target State) If the target
state is an equilibrium point of Eq. (1), then it is always
an equilibrium point of Eq. (5).

According to Proposition 2, if we adopt an equilibrium
point of Eq. (1) as a target state, we have only to discuss
stability of the target state in Eq. (5). Therefore, we focus
on the case that the target state is an equilibrium point of
Eq. (1) .

For simplicity, we begin with the case that c = c1 = c2 =

· · · = cn holds. In this case, we have the following theorem
for locally asymptotic stability of the target state.

Theorem 1 (Locally Asymptotic Stability with c = ci)
Let the linearization system of Eq. (1) at the target state
x = x∗ be ẋ = J0x. Then, the linearization system of Eq. (5)
at x = x∗ is given by

ẋ1

ẋ2

.̇..
ẋn

 =
J0 +


cIn1 0 . . . 0

0 cIn2 . . . 0
...

...
. . . 0

0 . . . . . . cInn


 x, (6)

where Ini is the ni × ni unit matrix. Let the eigenvalues
of the Jacobian matrix J0 be λ0k (k = 1, . . . ,N). The
origin is asymptotically stable in Eq. (6) if and only if
c > maxk(<(λ0k)) holds, where <(λ0k) is the real part of
λ0k.

For the case that the subsidy ci of the population i ∈ I
is determined independently of the other populations, we
have the following theorem:

Theorem 2 (Locally Asymptotic Stability) The lin-
earization system of Eq. (5) at x = x∗ is given by

ẋ1

ẋ2

.̇..
ẋn

 =
J0 +


c1In1 0 . . . 0

0 c2In2 . . . 0
...

...
. . . 0

0 . . . . . . cnInn


 x. (7)

Let J0(l,m) be the element of the lth row and the mth column
of J0, and d(i) =

∑
0≤ j≤i n j. The origin is asymptotically

stable in Eq. (7) if the following inequality holds for all
i ∈ I:

ci > max
k∈S i

 ∑
r,d(i)+k

|J0(d(i)+k,r)| + J0(d(i)+k,d(i)+k)

 . (8)

If the origin of the linearization system Eq. (6) is asymptot-
ically stable, then the target population state x = x∗ of the
nonlinear system Eq. (5) is locally asymptotically stable.

Theorem 3 (Globally Asymptotic Stability) Suppose
that each element of Ai j is non-negative for all i, j ∈ I and
the target state x = x∗ is a Nash equilibrium. The target
state is a globally asymptotically stable equilibrium point
of Eq. (5), if the following equation holds: for all i ∈ I

ci > max{0, sup
x∈int(∆)\x∗

c̄(x)}, (9)

where the function c̄(x) is defined by

c̄(x) := −
∑

i∈I
∑

k∈S i (xi∗
k − xi

k)ui(ei
k, x)∑

i∈I
∑

k∈C(xi∗)(xi∗
k − xi

k)
xi∗

k

xi
k

(10)

for all x ∈ int(∆) \ x∗. Moreover, c̄(x) satisfies

c̄(x) ≤ 2ā
∑
i∈I

(ni − 1), (11)

where ā = maxi, j∈I maxk∈S i,l∈S l Ai j
kl and Ai j

kl is the element of
the kth row and the lth column of payoff matrix Ai j.

By Proposition 1, without the loss of generality, it can
be assumed that each element of payoff matrices is non-
negative. For a game with payoffmatrices which have neg-
ative elements, we can obtain an another game whose pay-
off matrices have no negative elements by a local shift to
the original game. Applying Theorem 3 to the local shifted
game, we obtain the subsidy which makes the target state
of the original game globally asymptotically stable.

In Theorem 3, we assume that the target state is a Nash
equilibrium. Any equilibrium point which is not a Nash
equilibrium must be on the boundary of ∆, that is, x∗ ∈
bd(∆). For such a target state, we have the following theo-
rem:
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Theorem 4 (Convergence Condition to the Boundary)
Suppose that each element of Ai j is non-negative for all
i, j ∈ I and the target state x∗ satisfies x∗ ∈ bd(∆). If the
inequality

ci > max
m<C(xi∗)

max
l∈I

max
n∈S l

Ail
mn (12)

holds for all i ∈ I, then limt→∞ xi
k(t) = 0 for all k < C(xi∗).

If xi∗
k = 0 holds, then {x ∈ ∆|xi

k = 0} ⊂ bd(∆) is a
positive invariant set since ẋi

k = 0 also holds. By Theo-
rem 4, for all i ∈ I, we calculate a subsidy ci

1 for which
xi

k(t) converges to 0 for all strategies k < C(xi∗). Then,
by Theorem 3, for a sub-game which eliminates strategies
k < C(xi∗), we calculate a subsidy ci

2 which makes the tar-
get state globally asymptotically stable. Finally, we set the
subsidy ci = max{ci

1, c
i
2} so that the target state becomes

an attractor whose basin is ∆. However, it is not obvious
whether the subsidy obtained by the above procedure can
make the target state an attractor.

When the target state is on the vertex, we can prove that it
is not only an attractor but a globally asymptotically stable
equilibrium point.

Corollary 1 (Stability of the Target State on a Vertex)
Suppose that it xi∗ is on a vertex of ∆i for all i ∈ I. If the
inequality ci > n maxk∈S i⊂m maxl∈I maxt∈S l ail

kt holds for all
i ∈ I, then the target state is globally asymptotically stable
in Eq. (5).

4. Two-Population Two-Strategy Game

In this section, we focus on a two-population two-
strategy game and investigate locally asymptotic stability
conditions for the target state.

We set the payoff matrices A11, A12, A21, and A22 as fol-
lows:

A11 = A12 =

[
a1 0
0 a2

]
, (13)

A21 = A22 =

[
b1 0
0 b2

]
. (14)

Suppose that population states of populations 1 and 2 are
(x1

1, x
1
2) and (x2

1, x
2
2), respectively. Note that x1

1 + x1
2 = 1 and

x2
1 + x2

2 = 1 hold. For simplicity, we denote a population
state of all populations by (x, y), where x = x1

1 = 1 − x1
2

and y = x2
1 = 1 − x2

2. When we offer subsidies c1 and c2

to populations 1 and 2, respectively, replicator dynamics is
given by

ẋ = x(1 − x){(a1 + a2)(x + y) − 2a2} + c1{x∗ − x}, (15)

ẏ = y(1 − y){(b1 + b2)(x + y) − 2b2} + c2{y∗ − y}. (16)

Since we assume the target state (x∗, y∗) is an equilibrium
point of Eq. (1), it satisfies the following equations:

x∗(1 − x∗){(a1 + a2)(x∗ + y∗) − 2a2} = 0, (17)

y∗(1 − y∗){(b1 + b2)(x∗ + y∗) − 2b2} = 0. (18)

Table 1: Values of G and H for each target state.
(0, 0) (x̃, 0) (x̃, 1) (1, 0) (1, 1)

G −2a2
2a2(a1−a2)

a1+a2

2a1(a2−a1)
a1+a2

a1 + a2 −2a2

H −2b2
2(a2b1−a1b2)

a1+a2

2(a2b1−a1b2)
a1+a2

b1 − b2 −2b2

Equation (17) (resp. Eq. (18)) holds only if x∗ = 0, 1 −
x∗ = 0, or (a1 + a2)(x∗ + y∗) − 2a2 = 0 (resp. y∗ = 0,
1 − y∗ = 0, or (b1 + b2)(x∗ + y∗) − 2b2) holds. Obviously,
x = 0, x̃, 1 and y = 0, ỹ, 1 satisfy Eqs. (17) and (18), where
x̃ = 2a2/(a1 + a2) − y∗ and ỹ = 2b2/(b1 + b2) − x∗. So,
there are 9 candidates for the target state (x∗, y∗). However,
we have the same game by swapping the populations 1 and
2, and the pure strategies 1 and 2. So, we deal with the
following 6 target states:

(x∗, y∗) = (0, 0), (x̃, 0), (x̃, ỹ), (x̃, 1), (1, 0), (1, 1). (19)

Note that (x∗, y∗) = (x̃, ỹ) exists in ∆ if and only if a2 = αa1

and b2 = αb1 hold for a constant α. Then, (x̃, ỹ) satisfies
x̃ + ỹ = 2a2/(a1 + a2) = 2b2/(b1 + b2) = 2α/(1 + α).

We denote Eqs. (17) and (18) by ẋ = fx(x, y) and ẏ =
fy(x, y), respectively. The Jacobian matrix J of Eqs. (17)
and (18) at the target state is given by

J =


∂ fx
∂x

∣∣∣∣
x∗,y∗

∂ fx
∂y

∣∣∣∣
x∗,y∗

∂ fy
∂x

∣∣∣∣
x∗,y∗

∂ fy
∂y

∣∣∣∣
x∗,y∗

 , (20)

where

∂ fx

∂x
=(1 − 2x){(a1 + a2)(x + y) − 2a2}

+ x(1 − x)(a1 + a2) − c1, (21)

∂ fx

∂y
=x(1 − x)(a1 + a2), (22)

∂ fy
∂x
=y(1 − y)(b1 + b2), (23)

∂ fy
∂y
=(1 − 2y){(b1 + b2)(x + y) − 2b2}

+ y(1 − y)(b1 + b2) − c2. (24)

We begin with the case that the target state (x∗, y∗) is not
(x̃, ỹ). In this case, the Jacobian matrix has at least one non-
diagonal zero element since the target state satisfies y∗ = 0
or y∗ = 1. So, two eigenvalues of J correspond to diagonal
elements of J.

If we define G and H by

G =(1 − 2x∗){(a1 + a2)(x∗ + y∗) − 2a2}
+ x∗(1 − x∗)(a1 + a2), (25)

H =(1 − 2y∗){(b1 + b2)(x∗ + y∗) − 2b2}
+ y∗(1 − y∗)(b1 + b2), (26)

then we obtain G < c1 and H < c2 as locally asymptotically
stabilization conditions of the target state. Table 1 shows
the corresponding values of G and H for each target state.
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Figure 1: Stability region for G >
0, H > 0.
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Figure 2: Stability region for G >
0, H < 0.
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Figure 3: Stability region for G <
0, H > 0.

In the case that the target state (x∗, y∗) is (x̃, ỹ), we have
G = x̃(1 − x̃)(a1 + a2) and H = ỹ(1 − ỹ)(b1 + b2). The
Jacobian matrix is given by

J =
[
G − c1 G

H H − c2

]
. (27)

Its characteristic equation is given by

λ2 + (c1 + c2 −G − H)λ −Gc2 − Hc1 + c1c2 = 0. (28)

Both of the real parts of the eigenvalues of J are negative if
and only if the following conditions hold:

−Gc2 − Hc1 + c1c2 > 0, (29)

c1 + c2 −G − H > 0. (30)

Figures 1, 2, and 3 show the stabilization regions of the
target state in the c1-c2 plane. Note that the target state is
locally asymptotically stable in Eq. (5) without subsidies if
both G and H are negative. So, we exclude cases that both
of G and H are negative. The curves and the lines in Figs. 1
and 2 are l1 : c2 = H

1− G
c1
,

l2 : c2 = −c1 +G + H.

Dotted lines in Figs. 1, 2, and 3 are asymptotes of a curve
l2.

In the white region of Figs. 1, 2, and 3, the target state is
not stable equilibrium point. The boundary l1 between col-
ored and white regions is a pitchfork bifurcation set, where
two stable equilibrium points and the unstable target state
collide. On the other hand, the boundary l2 is a Hopf bi-
furcation set, where a stable limit cycle and the unstable
target state collide. Thus, the target state is asymptotically
stabilized in the colored region.

Table 2 shows the stabilization conditions of the target
state obtained by Theorems 1 and 2 depending on G and
H. The stabilization conditions of the target state obtained
by eigenvalues of the Jacobian matrix include the stabiliza-
tion conditions given by Theorems 1 and 2 as shown in Ta-
ble 2, which implies that the stabilization conditions given
by Theorems 1 and 2 are unnecessarily conservative in our
model. It is our future work to show less conservative sta-
bilization conditions than that provided in this paper.

Table 2: The stabilization conditions obtained by Theorems
1 (the condition of c) and 2 (the condition of (c1, c2)).

(x∗, y∗) G > 0,H > 0 G > 0,H < 0 G < 0,H > 0

Th. 1
(0, 0), (1, 0), (1, 1) max(G,H) G H
(x̃, 0), (x̃, 1) max(G,H) G H
(x̃, ỹ) G + H max(G + H, 0) max(G + H, 0)

Th. 2
(0, 0), (1, 0), (1, 1) (G,H) (G, 0) (0,H)
(x̃, 0), (x̃, 1) (2G,H) (2G, 0) (0,H)
(x̃, ỹ) (2G, 2H) (2G, 0) (0, 2H)

5. Conclusions

In this paper, we have proposed multipopulation replica-
tor dynamics with a capitation tax and a subsidy. We have
discussed the conditions of the subsidy which make the tar-
get state locally or globally asymptotically stable. Using
a two-population two-strategy game, we have investigated
the regions of subsidies in which the target state is locally
asymptotically stable. It is our future work to show less
conservative stabilization conditions than that provided in
this paper.
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