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Abstract—In this study, we present an experimentally
faithful model for synchronous flashing of Southeast Asia
fireflies. This model is based on the data of integrate-
and-fire mechanism of the synchrony in firefly flashing,
obtained in the field experiments by Hanson et. al. [1].
Through systematic simulations and analysis, we obtain
some rigorous results and numerical observations on per-
fect synchrony and wave-like patterns in synchrony. This
suggests that our model accounts for the coexistence of
perfect synchrony and wave-like pattern observed in New
Guinea.

1. Background and purpose of this study

Synchronous flashing of Southeast Asia fireflies has fas-
cinated people including scientists for over one hundred
years. Data from recent fieldworks uncover that these fire-
flies often exhibit a certain traveling wave pattern of flash-
ing, as well as a perfectly synchronized pattern, as schemat-
ically shown in Fig. 1. For the latter perfectly synchronized
pattern, mathematical models have been developed, for ex-
ample, by Mirollo and Strogatz [2], and by Ermentrout [3],
etc. However, to our knowledge, none of such models ac-
count for the coexistence of perfect synchrony and travel-
ing wave-like pattern.

In this study, we focus on the systematic data from field-
works by F. Hanson, J. Case, E. Buck, and J. Buck [1],
which explains how a single firefly is entrained to rhythms
of certain artificial flashing. Based on this experimental ob-
servation, we are lead to a simple, but experimentally faith-
ful mathematical model of firefly (P. effulgens) synchrony.
Interestingly, this model exhibits both perfect synchrony
and a certain wave-like pattern, depending on the natural
frequency in flashing for each firefly, quite naturally. Then,
we consider and clarify the following items, which are ob-
served in the presented model for firefly synchrony.

(i) The global convergence to the perfect synchronization
is proved for the all-to-all coupling case of N fireflies (in
Sec. 3), and (ii) Some conditions for generating the wave-
like flashing pattern are identified (in Sec. 4).

Figure 1 Two typical patterns of synchronous
flashing of fireflies
(A) Perfect synchronization
(B) Wave-like flashing pattern

2. Experimentally faithful model for firefly synchrony

Now, we review conventional studies of mathematical
modeling on firefly synchrony. So far, several mathemati-
cal models have been proposed for perfect synchronization
of fireflies. Mirollo and Strogatz [2] is the first to explore
such modeling. This has accomplished a rigorous account
for perfect synchronization of ‘fireflies’ for the first time.
However, in reality, as they mention clearly in their paper
[2] their model is originally inspired by the Peskin’s math-
ematical models for cardiac oscillators. Then, it is fair to
mention that their model is NOT directly related to the ob-
served firefly synchrony.

Later on, Ermentrout proposed an adaptive model for
synchrony in a particular firefly [3]. This provides a reason-
able mathematical insight as to why P. malaccae exhibits
superior ability for wide range of frequency entrainment.
However, some essential points in this model are due to a
mathematical reasoning, which is not directly supported by
the experimental data.

Further, Ermentrout analyzed a particular rotating fir-
ing pattern in pulse-coupled oscillators [4]. This provides
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some new mathematical treatments for rotating wave pat-
tern in pulse-coupled oscillators. But, this also is not di-
rectly linked to the observed wave patterns in group syn-
chrony of fireflies.

On the contrary, Hanson et. al. [1] have already ob-
tained some experimental observations on the entrainment
mechanism of an isolated firefly , which is briefly summa-
rized in Fig. 2. To account for their observations, they set
the following two assumptions. (1) Each firefly has a con-
stantly incrementing ‘timer’ in its nervous system. If this
timer reaches a certain threshold, the firefly flashes imme-
diately and the timer is reset to the initial state of 0. Then,
an isolated firefly flashes periodically in its own natural fre-
quency, as in Fig. 3(a). (2) When a firefly receives a flash-
ing pulse from other fireflies, it resets its timer to 0 and
basically cancels its planned flashing as in Fig. 3(b). But,
as shown in Fig. 3(c), if a firefly receives a pulse from other
fireflies when its timer becomes more than around 80% of
the above mentioned threshold, it resets its timer to 0 but
flashes at it has planned, due to certain mechanism of its
nervous system.

These assumptions seem quite natural and reasonable,
although their description in [1] is a bit complicated. How-
ever, to our knowledge, this mechanism has never been
considered to construct an experimentally faithful model-
ing of firefly synchrony. In this study, based on the above
insights by Hanson et. al. [1], we propose an integrate-
and-fire model for mutual synchrony of fireflies (schemat-
ically shown in Fig. 3). Through systematic simulations
and analysis on this model, some properties of perfect syn-
chrony and wave pattern of flashing are clarified.

3. An integrate-and-fire model and its global conver-
gence to synchrony

Here, we consider an integrate-and-fire model for fire-
fly group synchrony, based on the above mentioned en-
trainment mechanism. To model this group synchrony,
we assume each firefly controls its timing of flashing by
the above mentioned entrainment mechanism, as a first ap-
proximation. Then, we start from the most simple, all-to-
all (global) coupling case of N fireflies, where each firefly
equally interacts with each other. And, later we consider
cases of local coupling within a certain distance, in Sec. 4.

3.1. Synchronization patterns for two fireflies

We start from the simplest case of mutually interacting
two fireflies. As mentioned in Sec.2, we assume each fire-
fly has a continuously incrementing timer, and for simplic-
ity we further assume all fireflies have the same speed of
increment (≡ 1) and have the same maximum value of the
timer (≡ 1) where the firefly flashes. With this simplifica-
tion, we can identify the state of the timer as a point on the
span [0, 1).

Now, we name the two fireflies as A and B. From the

Figure 2 Summary of the observations in Hanson
et. al.[1]
(a) Phase shift of flashing by a single
pulse
(b) Entrainment to periodic pulses with
shorter or longer period, respectively
(c) Process of losing entrainment after
the periodic pulse is removed

above assumption, their instantaneous state of timers are
defined as φA and φB (∈ [0, 1)) respectively. The time evo-
lution of these phase variables φA,B is visualized as in Figs.4
and 5.

As shown in Fig. 4(a), when B receives a pulse from A,
the timer of B is reset to 0 (; φB becomes 0) and B cancels
its planed flashing if φB < Θ holds. Then, in this case B is
completely synchronized to A by the first pulse from A, and
this synchronization remains after that. Thus, the process
to complete synchronization is summarized as in Fig. 4(b).

On the contrary, as shown in Fig. 5(a), if B receives a
pulse from A when φB ≥ Θ, the situation becomes a bit
complicated. In this situation, by the pulse from A, φB be-
comes 0 from φ∗B but B flashes as it has planned. Then, by
this pulse from B, φA becomes 0 and A cancels its flashing
since φA = 1−φ∗B < Θ. After the time of φ∗B ( = 1− (1−φ∗B)
) from this event, when φA = φ∗A = φ∗B, A receives a pulse
from B. And this situation is the exactly the same to the be-
ginning except for A and B being replaced. From the above
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Figure 3 Schematic description of entrainment
mechanism per Hanson et. al.[1]
(1) Case of no external stimuli ; periodic
flashing in its own natural frequency
(2) Entrainment to periodic pulses with
longer periods than the natural period of
the firefly
(3) Entrainment to periodic pulses with
shorter periods than the natural period of
the firefly

arguments, the following property is proved.
[Prop. 1] For mutually interacting fireflies, perfect syn-

chronization is realized if their initial phase difference,
|φA − φB| > 1.0 − Θ (case 1). If the initial phase differ-
ence, |φA − φB| ≤ 1.0 − Θ, two fireflies flash alternatively
with the phase difference |φA − φB| (= 1 − φ∗B) (case 2).

Figure 4 Complete synchronization for two fireflies

3.2. Synchronization patterns of N fireflies

Then, we generalize the above arguments for the case of
two fireflies to N (N ≥ 2) fireflies.

Figure 5 Alternative flashing pattern for two fireflies

First, we name the N fireflies respectively as from 1 to
N, instead of A and B in the case of two fireflies. Then,
the associated phase variables are defined by φ1, · · · , φN (∈
[0, 1)) and we assume

0 ≤ φ1 < · · · < φk < · · · < φN < 1, (1)

without loss of generality. (If any two fireflies k and l ( < k)
has the same initial phase; φk = φl, then we identify these
two fireflies as one firefly, say k, without loss of generality.)

For instance, we consider the initial condition of
φ1, ..., φN as in Fig. 6(a). After the time of 1 − φN from this
situation, the firefly N flashes (; φN becomes 1 as in Fig.
6(b)). Then, the fireflies 1, ..., k − 1 are synchronized to N
from this point. On the other hand, the fireflies k, ...,N − 1
are synchronized to N but they are going to flash as they
has planned. This situation is shown in Fig. 6(c), where
○ denotes the firefly which is synchronized to N but still
going to flash. Here, a key consideration is required; the
number of ○ in Fig. 6(c). (It is noted that the instance of
Fig. 6(c) is always realized for any initial conditions when
the firefly N flashes.) If the number of○ is zero, it implies
the completion of perfect synchronization among the fire-
flies 1, ..., k−1, and N. Then, if the number of○ is one, this
situation falls into the case 1 (; perfect synchronization) in
Prop. 1. Finally, if the number of ○ is more than 2, this
falls into the case 2 (; alternative flashing) in Prop. 1. Thus,
the synchronization patterns of N fireflies are completely
classified into two cases; perfect synchronization and alter-
native flashing. From the above arguments, the following
property is proved.

[Prop. 2] For mutually interacting N fireflies, depend-
ing on the initial conditions, perfect synchronization or an
alternative flashing pattern of two clusters are eventually
realized.

4. Numerical observations for synchronous patterns

We now consider a group of fireflies in lattice for simu-
lation. Our simulation settings are described below. Each
firefly equally responds to every pulse from other fireflies.
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Figure 6 Synchronization process for N fireflies

Range of interactions are set to 4 (nearest neighbor), 8, 12,
and all to all, respectively for each simulation (see Fig.
7). Network of mutual interaction is simplified as an ar-
ray of network. Fixed or periodic boundary conditions are
assumed. Natural frequencies of fireflies are set to constant
and uniform. Initial timings are set to random, and then we
observed some settled patterns in simulation.

As a result, both perfect synchronization pattern and ro-
tating wave pattern are observed, depending on the initial
timings (see Fig. 8). In the rotating wave pattern (Fig.
8(a)), it is observed that fireflies around the center have
longer flashing periods than others. Actually, for a pace-
maker with lower frequency, a concentric wave pattern is
obtained (Fig. 8(b)).

Figure 7 Range of interactions

Figure 8 Simulation Results
(a) Rotating wave pattern
(b) Concentric wave pattern

5. Conclusions

We confirmed that the presented experimental faithful
model per Hanson et. al. [1] generates both perfect (or par-
tially) synchronization patterns and rotating wave pattern
even in the case of constant and uniform natural frequency
distribution in fireflies. One possible cause of wave pat-
tern is existence of firefly which has even a slightly lower
frequency than others.

The presented simple model reasonably explains the co-
existence of perfect synchrony and wave-like patterns ob-
served in New Guinea. Such features cannot be obtained
by the conventional ‘phase model’ descriptions.
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