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Abstract—
The memories in our minds have associative relations

among them, which form a complex network. Such a
memory relation network (MRN) may be reflected in spon-
taneous transitions among brain states during resting and
sleeping. Although such transitory dynamics can be de-
scribed by the chaotic neural network (CNN) model, the
influence of an MRN on the dynamics of the CNN model
has not yet been investigated. Here, we consider a CNN
with two types of connections. The first type is that of
the auto-associative connections, which represent the mem-
ories themselves, whereas the second type is that of the
hetero-associative connections, which represent the rela-
tions among these memories. We show numerically that
the CNN partially follows a given MRN and chaotically
visits the memories in some parameter regions. Our meth-
ods provide a way of introducing the MRN to the CNN
model without destroying chaos.

1. Introduction

The memories in our minds have associative relations
among them, which form a complex network [1, 2]. Here,
each memory is considered a node in the network, and the
associative relations among these memories correspond to
edges. Such a memory relation network (MRN) would
be involved in various cognitive tasks such as memory
search. The MRN may also influence spontaneous tran-
sitions among brain states during resting [3] and sleeping.

The chaotic neural network (CNN) model [4–6] is a neu-
ral network model composed of chaotic elements called
chaotic neurons. The CNN exhibits chaotic behavior in
some parameter regions, which is characterized by irreg-
ular transitions among the quasi-attractors. Such transitory
dynamics can be used for solving optimization problems
[7–14] and for the phenomenological modeling of cogni-
tive dynamics [6, 15–18].

However, the influence of the MRN on the dynamics of
the CNN model has not been investigated so far. This is
because the network size was small in the previous stud-
ies [6, 15, 16], and thus only few memories could be stored
in the CNN. Therefore, a complex MRN structure was im-

practicable.
On the other hand, we have recently developed cer-

tain simulation techniques and visualization methods for
a large-scale CNN [19–21]. To reduce the computational
costs, we have proposed parallel computing and a sparse-
connection regime [19]. It then becomes possible to simu-
late networks composed of more than one million units, a
number which is about 104 times that of the previous stud-
ies [6,15,16]. Furthermore, we have also developed several
methods to convert color images to binary codes so that the
CNN can memorize them [20, 21]. These methods can be
used to visualize the CNN’s states by mapping them to the
corresponding color images.

In this study, we consider a CNN with two types of con-
nections. This network architecture is based on the Klein-
feld model [22]. The first type is that of the auto-associative
connections, which represent the memories themselves.
The second type is that of the hetero-associative connec-
tions, which represent the relations among these memories.
In addition, signal propagation through connections of the
second type involves some delay. Whereas the MRN in the
original study [22] was a simple chain, here we consider
a much more complex network that includes “one-to-many
associations” [23], i.e., each node in the MRN has multiple
outgoing edges.

2. Methods and Models

The CNN is composed of N units, each of which has
two internal variables, ηi and ζi, and one output variable,
yi. Let us adopt the vector representation η = {η1, . . . , ηN}

T,
ζ = {ζ1, . . . , ζN}

T, and y = {y1, . . . , yN}
T. Then, the model

dynamics can be described by the following difference
equations:

η(t + 1) = k f η(t) +W y(t) + λV y(t − τ), (1)
ζ(t + 1) = kr ζ(t) − α y(t) + a, (2)
y(t + 1) = f (η(t + 1) + ζ(t + 1)), (3)

where W = (wi j) and V = (vi j) denote the N×N weight ma-
trices for the auto-associative connections and the hetero-
associative connections, respectively; 0 ≤ k f , kr ≤ 1,
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the decay constants; λ ≥ 0, the strength of the hetero-
associative connections; τ ∈ N, the synaptic delay; α ≥ 0,
the strength of the refractoriness; and a = {a1, . . . , aN}

T, the
bias that includes the time-invariant external input and the
threshold. The activation function f is an operation that
applies the logistic function f (x) = (1 + exp(−x/ε))−1 to
each element of the argument vector, where ε denotes the
steepness parameter.

The auto-associative weight matrix W represents the
memories themselves in the same manner as that in the
conventional associative memory model [24]. On the
other hand, the hetero-associative weight matrix V repre-
sents the directional relations among the memories in the
same manner as those in the sequential associative memory
model [22, 25, 26] and the bidirectional associative mem-
ory model [27]. Here, the memories are K binary patterns
sk
= {sk

1 . . . , sk
N}

T (k = 1, . . . ,K, sk
i ∈ {−1, 1}). For simplic-

ity, we assume that each pattern contains an equal number
of 1’s and−1’s. Then, the matrices W and V are determined
by the correlation matrices of the patterns as follows:

W =
1
K

K
∑

k=1
sk(sk)T, (4)

V =
1
|S |
∑

ekl∈S
sk(sl)T, (5)

where S is the edge set of the MRN and ekl is the edge from
node l to node k.

We remove a part of connections from the CNN to re-
duce the computational costs. Each unit receives projec-
tions only from L units that are selected at random. All
other connections are removed. In other words, we set the
synaptic weights of these connections to 0.

To visualize the CNN’s state, we use the color images
shown in Fig. 1A as the memory patterns. We also use the
MRN shown in Fig. 1B. The MRN has no self-loops and
no multiple edges, and every node has two incoming edges
and two outgoing ones.

The color images are converted to binary patterns so that
the CNN can memorize them. The RGB (red, green, and
blue) values are represented by integer values from 0 to
255. We convert each value to an 8-bit binary segment
using the reversible code discussed in [21]. These binary
segments of 1 and 0 are transformed to those of 1 and −1.
Finally, we concatenate all the binary segments into a sin-
gle binary pattern of length N = 8 × 3 × 1282

= 393 216.
The reversible code guarantees that the statistics of the long
binary patterns are effectively the same with those of ran-
dom patterns.

The CNN output is decoded in the opposite manner.
The analog outputs of the units are quantized, i.e., ỹi(t) =
u(yi(t) − 0.5), where u is the step function. The quantized
data are interpreted by once again using the reversible code,
and the corresponding color images are reconstructed. Be-
cause the CNN memorizes not only the given binary pat-
terns but also their reversed ones, −s1, . . . ,−sK in Eq. 4,
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Figure 1: (A) The 16 color images (128×128 pixels, the 24-
bit RGB mode) stored in the CNN. The images are sampled
from the Columbia Object Image Library (COIL-100) [28].
(B) Memory relation network represented by the hetero-
associative connections.

the reversible code guarantees that any binary pattern and
its reversed one are decoded to the same color image.

We also introduce an overlap, mk(t) (k = 1, . . . ,K), to
characterize the CNN’s state quantitatively, as follows:

mk(t) = 1 − 1
N

N
∑

i=1

∣

∣

∣

∣

sk
i + 1

2 − ỹi(t)
∣

∣

∣

∣

, (6)

where sk
i denotes the ith element of the kth binary pattern.

mk(t) takes 1 when the CNN retrieves the kth pattern com-
pletely, whereas it takes 0 when the reversed kth pattern is
retrieved.

We perturb the CNN slightly to facilitate chaotic transi-
tions among the memory patterns. The perturbation is only
applied at the point where the CNN’s state is maximally
disordered. This is because, at that point, the sensitivity to
perturbation is high and the visual effect induced by it is
negligible. To evaluate the order of the CNN, we use the
following quasi-energy function QE(t):

QE(t) = −1
2 y(t)TW y(t) − (a + λV y(t − τ))Ty(t). (7)

If QE(t−2) < QE(t−1) and QE(t−1) > QE(t), a perturba-
tion is applied (see Fig. 2). To avoid small peaks in QE(t),
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Figure 2: Time series of quasi-energy QE(t). Arrows indi-
cate perturbation times.

we set a waiting period of twp steps after each perturbation
during which another perturbation is prohibited. To apply
a perturbation, we multiply all the internal variables by a
scholar value r ∈ R, i.e., η(t)← r η(t) and ζ(t)← r ζ(t).

3. Simulations and Results

In the following simulations, we set k f = 0.8, kr = 0.9,
α = 12, ε = 0.015, L = 480, λ = 0.1, τ = 10, r = 0.25,
and twp = 10. ai follows a uniform distribution in [2, 4]. As
an initial condition, ηi(0) follows a uniform distribution in
[0, 1], and ζi(0) = 0. The simulations are run on a cluster
of four Linux server machines, each having two 3.0-GHz
single-core processors and 2.0-GB RAM. The computation
of one step of the simulation takes approximately 1 s.

Figure 3 shows a typical time series of the decoded CNN
output, where many stored images appear successively.
The quasi-energy QE(t) is low when any stored image is
apparent, whereas it is high when a noisy image is seen.

We use the following criteria to detect the memory re-
trievals. If mk(t) > 0.8 or mk(t) < 0.2, then we decide that
the kth memory is retrieved at time t. More than two mem-
ories cannot be retrieved simultaneously. Figure 4 shows a
plot of the retrieval times of the memories, where the order
of memory recall is not periodic, but some sort of structure
is also seen such as transitions among consecutive memo-
ries.

Figure 5 shows the actual transition frequencies among
the memories. The observed transitions are divided into
two types based on whether or not the transition is consis-
tent with the MRN shown in Fig. 1B. We can see that most
of the observed transitions are consistent with the given
MRN. Furthermore, most edges in the MRN are realized at
least once, and only few edges are unrealized.

We also investigate the effect of the strength of the
hetero-associative connections λ, as shown in Fig. 6. We
can see that consistent transitions become dominant as λ
increases. However, unrealized transitions also become
dominant with large λ. This is because all the transitions
are limited in a subnetwork of the MRN that has only few
nodes and edges.

Time

Figure 3: Example of time series of the decoded CNN out-
put displayed with 4-step intervals.
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Figure 4: Retrieval times of the memories.

1 2
3

4

5

6

7
8910

11

12

13

14

15
16

Figure 5: Transition frequencies among the memories ob-
served in 2000 steps. The size of the arrows is proportional
to the frequency. Orange, blue, and dotted arrows indicate
consistent, inconsistent, and unrealized transitions, respec-
tively.
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Figure 6: Effect of the strength of the hetero-associative
connections λ. Solid curve shows the proportion of con-
sistent transitions among all observed transitions. Dashed
curve shows the proportion of unrealized transitions among
all edges in the MRN. Averaged over 10 simulation trials
of 2000 steps.

4. Discussion and Conclusions

We have proposed a way of introducing the MRN to
the CNN model. The CNN has two types of connec-
tions, which represent the memories themselves and the
directional relations among these memories. The MRN in-
cludes one-to-many associations, and the chaotic dynamics
chooses a memory pattern among the candidate memories
for the next transition. We have shown numerically that
the CNN partially follows the given MRN and chaotically
visits the memories in some parameter regions. Our future
work is to analyze the chaotic dynamics in detail and char-
acterize it quantitatively.
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