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Abstract—We propose a numerical calculation method
of characteristic multiplier for the fixed point in a rigid
overhead wire-pantograph system. First, we show a rigid
overhead wire-pantograph system and explain its dynam-
ics. Then, the Poincaré map is defined by using the local
section and some objects. In addition, the fixed point is
completely calculated based on the derivative of Poincaré
map. Finally, above method is applied for a rigid overhead
wire-pantograph system.

1. Introduction

The class of system that switched depending on its own
state, including jump phenomena when the orbit hits the
border is generally called as the impact oscillator. It is well
known that there are variety of nonlinear phenomena in the
impact oscillator because of its switching complicity. Also,
impact oscillator is classified into two types based on the
property of borders. The first type of impact oscillator has
the fixed border. Many researchers have investigated the
nonlinear dynamics in such class of impact oscillator; me-
chanical system [1, 2], spiking neuron model in biological
system [3,4], impact model of forest fire in ecosystem [5].

The rigid overhead wire-pantograph system with moving
border is classified into the other type of impact oscillator.
One of a big problem in the rigid overhead wire-pantograph
system is the rail corrugation because it generate a noise
and contact loss in the running railway. Thus the qualitative
analysis of the rigid overhead wire-pantograph system is an
important topic in the engineering field in terms of the prac-
tical application. In a previous work, the simplified model
of the rigid overhead wire-pantograph system has proposed
in Ref. [6]. We also have studied above simplified model,
and clarified some basic characteristics in terms of the bi-
furcation theory [7]. On the other hand, the detailed bi-
furcation analysis is very difficult because the model is di-
vided in high-dimensional system with nonlinear property.
For this reason, there is no result of the detailed bifurcation
analysis in the rigid overhead wire-pantograph system.

This paper addresses the first step to completely analyze
the bifurcation phenomena in a two-dimensional model [7]
from the mathematical point of view. More preciously, the

numerical calculation method is constructed based on Ref.
[8]. Note that Ref. [8] clarified the analyzing method of bi-
furcation phenomena for the fixed point in two-dimensional
impact oscillator with the fixed border. First, we show the
model and explain its dynamics. Then, the Poincaré map
is defined by using the local section and some objects. In
addition, the fixed point is completely calculated based on
the derivative of Poincaré map. Finally, above method is
applied for a rigid overhead wire-pantograph system.

2. A Rigid Overhead Wire-Pantograph System

The overhead wire model includes the rail corrugation,
and the pantograph model is composed of a spring, damper
and mass, respectively. Note that the mass in the panto-
graph model impacts to the stopper that vibrates periodi-
cally. Now, we call stopper as the border in the following
analysis. In addition, we assume the initial displacement
d in the pantograph model because actual pantograph has
the upward force. Let us suppose that the initial displace-
mentd is defined by the equation of static equilibrium in
our model. Consequently, the model’s equation of motion
is shown as follows [6]:































dx
dt

= v

dv
dt

= −x − 2ζv + Pn,

(1)

mass

damper
spring

d

x ,  

0 overhead wire model

pantograph model

 S(t)

Figure 1: Nonlinear vibration system.
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Figure 2: Example of the orbit

whereζ, x andv denote the damping ration, the displace-
ment and the velocity in the pantograph model, respec-
tively. On the other hand, the normalized equation of the
overhead wire model is given by

S (t) = ε sinΩt + 1, (2)

where the displacementS (t) depends on the amplitudeε
and the frequency ratioΩ in the overhead wire model.

Figure 2 shows an example of the orbit. In the upper sec-
tion of Fig. 2 denotes the displacements of the mass (x) and
border (S (t)), respectively. Likewise, the lower section of
Fig. 2 corresponds to the velocities of the mass (v) and the
border (dS (t) / dt). The orbit is described by Eq. (1) until
the parameterx reaches toS (t). After that the tangential
forcePn appears between the pantograph and the overhead
wire. Now,Pn is expressed as follows:

Pn =















ε[(1 −Ω2) sinΩt + 2ζΩ cosΩt] + 1, x ≤ S (t),

0, x > S (t).
(3)

The orbit during the periodic interval is classified into two
types by the state ofPn at timex = S (t). If Pn > 0 is satis-
fied, the pantograph model keeps the state of contact with
the overhead wire model. On the other hand, the impact be-
tween the pantograph model and overhead wire model can
be observed under the condition ofPn = 0; and the velocity
immediately switches to the positive vector field. Note that
v+ in Eq. 4 denotes the velocity of after the impact.

v+ = −αv− + (1+ α)
dS (t)

dt
(4)

Now, v− anddS (t)/dt are velocities ofx andS (t). Also,α
is a coefficient of restitution between the pantograph model
and the overhead wire model.

3. Numerical Calculation Method of Characteristic
Multiplier

3.1. Poincaŕe map

We calculate the characteristic multiplier in the rigid
overhead wire-pantograph system. First of all, we let the

behavior of orbit in the system as follows:






















dx
dt
= f (x, v, λ)

dv
dt
= g(x, v, λ)

, (5)

where the parameterst, x, v andλ satisfiest ∈ R, x, v ∈ R2

f , g : R2 andλ. Now, Eq. (5) is rewritten as follows:














x(t) = ϕ(t; x, v, λ), x(0) = x0

v(t) = φ(t; x, v, λ), v(0)= v0
, (6)

wherex0 andy0 means the initial value at timet = 0. Next,
we define the following local sectionΠ ∈ R2 by using
scalar functionsq : R2 → R2.

Π = {x, v ∈ R2 : q(t, x, v) = 0, q : R2 → R2},

q(t + T, x, v) = q(t, x, v)
(7)

Also, we assume that the mapP gives the following jump-
ing phenomena in the orbit if x reaches toΠ.

P : R2 → R2,
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φ(τ0; x0, v0, λ)















7→















x1a+

v1a+















=















r(τ0; x0, v0)

s(τ0; x0, v0)















(8)

τ0 is the time when the orbit reaches toΠ. The orbitx1 at
the timeT is expressed as follow:

x1 =















x1

v1















=















ϕ(T − τ0; x1a+, v1a+, λ)

φ(T − τ0; x1a+, v1a+, λ)















. (9)

Next, we define the map.

M0 : R2 → Π, (x0, v0) 7→ (x1a−, v1a−)
M1 : Π → R2, (x1a+, v1a+) 7→ (x1, v1).

(10)

Consequently, the Poincaré map is given by

M : R2 → R2

(x0, v0) 7→ (x1, v1) = M1 ◦ P ◦ M0.
(11)
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In the following analysis, we discuss the derivative of the
Poincaré map. Eq. (11), is rewritten as follows:

DM(x0, v0) =
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(12)

Now, derivative of the functionP is given by follows de-
pending on the initial value.
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Moreover,
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(14)

We should remark that the function

q(τ0; x0, v0) = x1a− − S (t) = 0, (15)

is differentiable forx0. Hence,
∂q
∂x0

can be obtained as
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A fixed point of the Poincaré map is given by

x0 − M(x0) = 0. (18)

The characteristic equation for the fixed point is expressed

χ(µ) = |µIn − DM(x0)| = 0. (19)

We can obtain the location and stability of fixed point when
Eqs. (18) and (19) are solved by arbitrarily numerical cal-
culation method.

3.2. Application result

Figure 3 shows the example of the orbit and phase plane
with variousΩ. In this figure, we can observe that the
fixed point bifurcate to the period-2 orbit via the period
doubling bifurcation. Now, we pay attention to above pe-
riod doubling bifurcation, and apply our method for the
fixed point. More preciously, we calculate Eqs. (18) and
(19). Table 1 shows the analytical result; the fixed point
and characteristic multiplierµ1 andµ2. Consequently, we
conclude that the period doubling bifurcation is occur at
Ω = 4.57641, After that the fixed point becomes unstable,
and the period-2 orbit is generated. Here, Fig. 4 shows
the one-dimensional bifurcation diagram atζ = 0.049.
Likewise, the period doubling bifurcation is observed at
Ω = 4.57641 in this figure. To that end, we can realize
that our method proposed in the previous section may ap-
plicable to the analysis of stability for the period-n (n ≥ 2)
orbit in the rigid overhead wire-pantograph system.

4. Conclusion

In this paper, we have proposed the numerical calcula-
tion method of characteristic multiplier for the fixed point
in the rigid overhead wire-pantograph system. First, we
explained the model and derived the the Poincaré map.
Then, the fixed point was completely calculated based on
the derivative of Poincaré map. Finally, we applied our
method to the rigid overhead wire-pantograph system. As
a result, our method’s validity was confirmed. Also, we
consider that our method proposed in this paper may appli-
cable to the analysis of stability for the period-n (n ≥ 2)
orbit in the rigid overhead wire-pantograph system. Our
future work to be studied is to calculate the stability of the
period-n (n ≥ 2) orbit.
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Table 1: Calculation of the fixed point and characteristic
multiplier withΩ (ζ = 0.049).

Ω µ1 µ2 Remarks

4.45798 -0.02840 -0.73682 Stable
4.48592 -0.02619 -0.79956 Stable
4.51550 -0.02422 -0.86545 Stable
4.56359 -0.02160 -0.97177 Stable
4.56804 -0.02139 -0.98157 Stable
4.57201 -0.02120 -0.99031 Stable
...

...
...

...

4.57641 -0.02100 -1.00000 Period-doubling
bifurcation

...
...

...
...

4.58033 -0.02082 -1.00861 Unstable
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Figure 3: Orbits and phase plane (ζ = 0.049).
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