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Abstract—Differing from the existed works centralize
the nodal consensus, this paper shifts its focus to the con-
sensus taking place on the edges (i.e., edge consensus) of
complex networks and investigates the influence of net-
work structure on its edge consensus. By transforming the
original nodal topology to its corresponding line graph, we
analyze the influence of network structure on some perfor-
mances based on simulations, including the edge consen-
sus convergence speed, edge degree distribution, and edge
assortative property.

1. Introduction

Consensus is a typical collective behavior which aims to
guide all agents of a group to reach a common state using
only local information. And a large number of efforts have
been devoted to this interesting research field [1, 2, 3, 4, 5].
Recently, with the rapid development of network science,
the problem of consensus has been extended to complex
networks and becomes one of the main focuses in network
research [6, 7, 8, 9, 10, 11, 12, 13]. References [9, 10]
devoted to the consensus of small-world networks, while
[11, 12, 13] turned to that of scale-free networks.

However, all the existed letters, as the references stated
above, kept their eyes on the nodal dynamics and investi-
gated the consensus of complex networks in which consen-
sus means all the nodes can reach an agreement. Very re-
cently, Vicsek et al. paid attention to the edges of complex
networks in [14]. They gave a specific evolution dynamics
of the edges and compared the controllability properties of
the edge dynamics with those of nodal dynamics. Further-
more, in [15], the authors built an effective edge consensus
protocol for the first time and solved the edge consensus of
complex networks.

Motivated by these two works, in this paper, we still con-
cern the edge consensus, but switch our attention to the
influence of the network structure by taking the scale-free
networks which follow the power law degree distribution
with a scaling exponent γ between 2 and ∞ as examples.
For scale-free networks with the same number of nodes and
edges, apparently, different degree distribution means dif-
ferent structure. This paper analyzes the influence of net-
work structure on edge consensus convergence speed, edge
degree distribution, edge assortative property by changing

the degree distribution of scale-free network, i.e., by chang-
ing the scaling exponent γ of its degree distribution. Based
on simulation results, we can get that the edge consensus
convergence speed increases fast as the scaling exponent γ
increases. Also, when the original network is with scaling
exponent γ ∈ (3,+∞), the edge degree distribution has an
approximate power-law tail. Moreover, it is found that the
edge assortative coefficient is a decreasing function of the
assortative coefficient of its original network, when its o-
riginal network is heterogeneous with the scaling exponent
γ ∈ (2, 3).

2. Preliminaries

Let G = (V,E) denote an undirected graph with node
set V = {v1, v2, · · · , vN} and edge set E = {(vi, v j)| if there
exists an edge between vi and v j}. The communication
topology of the network is described by the adjacent ma-
trix A =

(
ai j

)
∈ RN×N , where

ai j = a ji =

{
= 1, if (vi, v j) ∈ E;
= 0, otherwise. (1)

On the basis of the nodal topology adjacent matrix A,
at first, we will present how to get the corresponding edge
topology from the original nodal topology by virtue of line
graph [17, 18]. Before moving on, it is worthy to know that
two edges are neighboring edges if they have a common
ending node [15]. For an undirected graph G = (V,E), the
evolution of an undirected graph to its line graph can be
divided into two steps: (i) we focus on the edge set E and
transform the all the edges (vi, v j) ∈ E into nodes denoted
as i j and named as freshly generated nodes; (ii) add an edge
to the two freshly generated nodes if their corresponding
original edges in E are neighboring edges. The detailed
description can consult reference [15].

The edge consensus protocol is [15]:

xi j(k + 1) = xi j(k) + ε

∑s∈N(i) ais

[
xis(k) − xi j(k)

]
+
∑

s∈N( j) a js

[
x js(k) − xi j(k)

] ,∀(vi, v j) ∈ E,

(2)
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Figure 1: Second largest eigenvalue of P as a function of γ.

where xi j represents the dynamics of the edge (vi, v j), ε > 0
is the step size and N(i) = { j|(vi, v j) ∈ E} is the neighboring
set of node i.

As stated in reference [15], if the step size ε > 0 satisfies

0 < ε < ∆ =
1

max{∑s∈N(i),s, j ais +
∑

s∈N( j),s,i a js}
, (3)

and the original nodal topology is connected, protocol (2)
can guarantee the edge consensus. We can prettify Eq. (2)
to the matrix form as

X(k + 1) = PX(k), (4)

and P is a double stochastic matrix. Define the initial value
of X as X(0), one has

X(k) = PkX(0). (5)

By [16], the convergence speed of (4) is determined by
the second largest eigenvalue of P, λ2(P). Moreover, the
smaller the λ2(P) is, the faster the consensus converges.

In what follows, we will study some performance of the
edges of scale-free networks from the perspective of struc-
ture.

3. Main results

To explore the influence of network structure, we consid-
er an undirected and unweighted scale-free (SF) network
which follows a power law degree distribution with a tun-
able scaling exponent γ ∈ (2,∞) [19, 20, 21].

In the simulations, the number of nodes is N, the initial
edge number is m0, the edge number connecting from the
new node to the old nodes is m.

3.1. Influence of network structure on edge consensus
convergence speed

This subsection presents the edge consensus conver-
gence speed of scale-free networks with different degree
distribution. We take N = 500, m0 = 3, m = 3 and the
simulation results are averaged over 50 realizations.

Figure 1 shows that the second largest eigenvalue of
P, λ2(P), is a decreasing function of the scaling expo-
nent γ, which means that the more homogeneous the o-
riginal network, the faster the convergence speed of edge
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Figure 2: Edge consensus convergence speed of the SF net-
work as a function of γ.
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Figure 3: The edge degree distribution when its original
network with scaling exponent γ = 2.1.
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Figure 4: The edge degree distribution when its original
network with scaling exponent γ = 2.5.

consensus. Figure 2 shows that the time steps required to
achieve consensus also decreases with the increasing scal-
ing exponent γ and this result is in accordance with the
change trend of λ2(P). Here the consensus is achieved if
max(vi,v j)∈E −min(vi,v j)∈E ≤ 0.001. These two figures illus-
trate that the edge consensus convergence speed is the in-
creasing function of the scaling exponent γ of the original
nodal network.

3.2. Influence of network structure on edge degree dis-
tribution

At first, it should be stated that the edge degree distri-
bution of a network is the degree distribution of its corre-
sponding line graph. Under this statement, some simula-
tions are presented to display the edge degree distributions
of scale-free networks. Here N = 5000, m0 = 3 and m = 3.

Figures 3–7 show the edge degree distributions of scale-
free networks with different scaling exponent γ. From all
these figures, we can gain that:
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Figure 5: The edge degree distribution when its original
network with scaling exponent γ = 3.
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Figure 6: The edge degree distribution when its original
network with scaling exponent γ = 6. The dashed line
have slope γedge = 2.48.
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Figure 7: The edge degree distribution when its original
network with scaling exponent γ = 10. The dashed line
have slope γedge = 2.82.

• (i) for γ ∈ (2, 3), as shown in figures 3, 4, 5, the edge
degree distribution does not emerge distinguished
feature;

• (ii) for γ ∈ (3,∞), the edge degree distribution has an
approximate power-law tail, as shown in figures 6, 7.

In a word, the edge degree distribution of a scale-free
network is affected by the structure of its original network.
For a heterogeneous original network with scaling expo-
nent γ ∈ (2, 3), the edge degree distribution has no obvious
feature; whereas for an approximative homogeneous origi-
nal network, that is the original network with scaling expo-
nent γ > 3, the edge degree distribution has an approximate
power-law tail.
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Figure 8: The relationship between ξ and ζ when its origi-
nal network with scaling exponent γ = 2.6.
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Figure 9: The relationship between ξ and ζ when its origi-
nal network with scaling exponent γ = 2.9.
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Figure 10: The relationship between ξ and ζ when its orig-
inal network with scaling exponent γ = 3.3.

3.3. Influence of network structure on edge assortative
property

The edge assortative property of a network means the
assortative property of the line graph of its original net-
work. For the network has degree correlation, assortative
coefficient or disassortative coefficient is another important
measure of complex network to further depict its degree
correlation. The objective of this subsection is to demon-
strate the relationship between the assortative property of
the original scale-free network ξ, and its edge assortative
property ζ.

In this subsection, N = 500, m0 = 3, m = 3. Fig-
ures 8,9,10 show that the edge assortative coefficient ζ is
a roughly decreasing function of that of its original scale-
free network ξ, when the network is heterogeneous with
γ ∈ (2, 3). Here, we can not obtain the specific lower bound
of the scaling exponent γ but only get this property from the
simulations. What’s more, the edge assortative coefficients
of scale-free networks are always positive, that is the net-
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work corresponds to the line graph is always assortative, no
matter its original network is assortative or not.

4. Conclusions

This paper explores the influence of network structure
on edge consensus by taking the scale-free networks with
different degree distribution as examples, and finds out the
relation of the edge consensus convergence speed and the
scaling exponent γ of the degree distribution. Similarly,
the influence of network structure on edge degree distribu-
tion and edge assortative property are discussed and some
interesting results are obtained.
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