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Abstract—In this paper, we propose a multiple-
scales method for finding an approximate solution of
state equations describing nonlinear circuits that con-
tain both very large and very small natural frequen-
cies. The state equations are represented by the sys-
tem of autonomous nonlinear differential equations.
The proposed multiple-scales method is based on a
matrix function and a perturbation technique. As an
example, we use the Rayleigh’s equation and show that
the envelope of an oscillator can be calculated sepa-
rately.

1. Introduction

Nonlinear circuits are key building blocks in many
electric and electronic systems. Because of their signif-
icance, we need to devise a precise analysis of an appro-
priate circuit model. In the mathematical model, stray
and sluggish elements cannot be neglected. The former
affects the high-frequency behaviour (fast-dynamics)
and the latter the low-frequency behaviour (slow-
dynamics) of the circuits. Hence, the circuit behaviour
is characterised by a mixture of low-frequency and
high-frequency behaviour [5]. We call such systems
stiff nonlinear circuits.

When we analyse stiff nonlinear circuits, we should
consider both the fast- and slow-dynamics or, in other
words, the dynamics on the multiple time scales. The
most common approach is a straightforward numer-
ical method such as Runge-Kutta. However, widely
separated time constants cause long simulation times.
Moreover, we may also encounter numerical instability
during simulations.

Stiff linear systems are described in [1, 6, 7]. The
multiple-scales methods are mainly used for the anal-
ysis of mechanical systems described by the linear or-
dinary differential equations of 2nd order [4]. How-
ever, in electric and electronic circuits, more general
description by the state vector and matrix notation
is needed because the number of dynamic elements is
larger. This paper presents the multiple-scales method
for the stiff nonlinear circuits by using a matrix func-
tion and a perturbation technique.

2. Fundamental equation
Let us consider nonlinear circuits with no sources.

Their mathematical models can be represented by an
autonomous system of differential equations

dx

dt
= Ax + ε{Bx + f(x)}, (1)

where A and B are n × n real matrices and x is n
real vector called a state vector. The vector valued
function f(x) is the smooth nonlinear function. We
assume that the spectrum λ(A) has two scales, which
implies that the eigenvalues λi (i = 1, · · · , n) are clus-
tered into two sets widely separated in magnitude.
Here, we call (1) a stiff nonlinear system.

3. Multiples-scales method
3.1. Preconditioning

Let the eigenvalues of A be denoted by ρi and αi +
j βi, where ρi is a real number and j =

√−1. If αi and
ρi are small, the amplitudes of oscillations slowly decay
or diverge away. If βi is small, the amplitude oscillates
slowly. In these cases, these amplitudes remain almost
constant over the fast time scale. The slow and fast
time scales provide the division of the eigenvalues into
two groups:

1. αi, βi, ρi are O(1)
2. αk, βk, ρk(i 6= k) are O(ε).

In the latter case, let
αk = εα′k, βk = εβ′k, ρk = ερ′k, (2)

where α′k, β′k, and ρ′k = O(1). Following the above
division of the eigenvalues, we have

P−1AP = D0 + εD1, (3)
D0 = diag(· · · , αi + j βi, · · · , ρi, · · · )
D1 = diag(· · · , α′k + j β′k, · · · , ρ′k, · · · ),

where P is n×n nonsingular matrix. Hence, we divide
A as

A = A0 + εB1, (4)

where
A0 = PD0P

−1, B1 = PD1P
−1. (5)

If αi = 0 and ρi = 0, the matrix A0 is called oscillatory.
When A0 = A and B1 = B, we obtain (1). We deal
with the case where A is oscillatory.
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3.2. First approximate solution

We introduce various time scales defined by

τ0 = t, τ1 = εt, τ2 = ε2t, · · · . (6)

The time scale τ0 is the fast scale, and τ2, τ3, · · · are
slow scales. We are now in a position to obtain the
asymptotic solution of (1) in terms of τ0, τ1, τ2, · · · .
Hence, we should transform the independent variable
t into τ0, τ1, τ2, · · · . Let us define the differential oper-

ators D =
d
dt

, D0 =
∂

∂τ0
, D1 =

∂

∂τ1
, D2 =

∂

∂τ2
, · · · .

Then, (6) gives the operator transformation by using
the chain rule

D = D0 + εD1 + ε2D2 + · · · . (7)

Let the asymptotic solution of (1) be of the form

x = x(0)(τ0, τ1, τ2, · · · )+ε x(1)(τ0, τ1, τ2, · · · )+· · · . (8)

Substituting (8) into (1) with the use of (7) and equat-
ing the same powers of ε, we obtain the series of dif-
ferential equations

(D0 −A)x(0) = 0 (9-a)
(D0 −A)x(1) = −(D1 −B)x(0) + f(x(0)) (9-b)
(D0 −A)x(2) = −D2 x(0) − (D1 −B − f ′(x(0)))x(1)

· · · · · · · · · (9-c)

where f ′(x(0)) is the Jacobian matrix of f(x) at x =
x(0). The general solution of (9-a) is given by

x(0) = exp (Aτ0) y(τ1, τ2, · · · ), (10)

where y(τ1, τ2, · · · ) is n vector determined by τ1, τ2, · · ·
in higher approximations. Substituting (10) into the
right hand side of (9-b), we obtain

D0 x(1) −A x(1) = − exp (Aτ0)[{D1 −B(1)(τ0)} y

−f (1)(τ0, y)], (11)

where

B(1)(τ0) = exp(−Aτ0)B exp(Aτ0)

f (1)(τ0, y) = exp (−Aτ0)f(exp (Aτ0) y).

In order to remove the secular term from the solution
x(1) of (11), the vector y should be determined to elim-
inate the constant vector (dc component) on the right
hand side of (11) [2, 3]. Hence, we obtain the constant
vector

c(y) = lim
T→∞

1
T

∫ T

0

{B(1)(ξ)y + f (1)(ξ, y)}dξ.(12)

Using the vector c(y), we derive the condition for
avoiding secular term in (11)

D1 y − c(y) = 0. (13)

Equation (13) is the system of nonlinear equations. Its
solution can be written as

y(τ1, τ2, · · · ) = Y (τ1)z(τ2), (14)

where Y (τ1) is n × n matrix and z(τ2) is n vector.
Substituting (14) into (10), we obtain the solution

x(0)(τ0, τ1) = exp (Aτ0)Y (τ1)z(τ2). (15)

Hence, the solution to the first approximation is

x(0)(t) = exp (At)Y (εt)z(0), (16)

where z(0) is the initial value of x at t = 0.

3.3. Second approximate solution

We now proceed to the second approximation. In
order to determine z(τ2) in (15), we set the condition
that the particular solution x(2) of (9-c) has no secular
term. Now, we consider (14) and introduce a new
vector c′ defined as

c′(z, τ0, τ1, τ2) = B(1)(τ0) y(τ1, τ2)

+f (1)(τ0,y)− c(y). (17)

If (13) is satisfied, the particular solution of (11) is
given by

x(1) = − exp (Aτ0)
∫ τ0

0

c′(z, ξ, τ1, τ2)dξ. (18)

Substituting (18) and (15) into (9-c), we obtain

D0 x(2) −A x(2) = − exp (Aτ0){Y (τ1)D2 z(τ2)

+ (−D1 + B(1)(τ0) + f ′(1)(τ0)) c′(1)},(19)

where

c′(1)(z, τ0, τ1, τ2) =
∫ τ0

0

c′(z, ξ, τ1, τ2)dξ

f ′(1)(τ0) = exp (−Aτ0)f ′(exp (Aτ0)Y0z) exp (Aτ0).

Taking the dc-component of the right handside of (19)
with respect to τ0 gives

d(z) = lim
T→∞

∫ T

0

{(−D1 + B(1)(ξ)

+f ′(1)(ξ)) c′(1)(z, ξ, τ1, τ2)}dξ. (20)

We then obtain the condition for the absence of the
secular term in (19)

D2 z + Y −1(τ1)d( z) = 0. (21)

The solution of (21) can be expressed as

z = z(τ2) = Z(τ2) z0, (22)

where Z(τ2) is the matrix introduced to represent the
solution z(τ2) and z0 is a constant vector. Substitut-
ing (21) into (18) and (15), we obtain

x(0) = exp (Aτ0)Y (τ1)Z(τ2) z0 (23)
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and

x(1) = − exp (Aτ0) c′(1)(Z(τ2), τ0, τ1, τ2). (24)

Therefore, the solution to the second approximation
is

x = x(0)(t, εt, ε2t) + εx(1)(t, εt, ε2t)
= exp (At){Y (εt)Z(ε2t)− ε c′(1)(Z(ε2t), t, εt)}.

(25)

In practice, the processes of obtaining the second ap-
proximate solution becomes rather involved.

4. Illustrative example

For simplicity, we consider the two-dimensional
nonlinear oscillatory system and apply the proposed
method. Let us consider Rayleigh’s equation

d2u

dt2
+ u− ε(

du

dt
− 1

3
(
du

dt
)3) = 0. (26)

Equation (26) is reduced to (1) by setting v = du/dt,
where

x =
(

v
u

)
, f(x) =

(1
3
v3

0

)

A =
(

0 −1
1 0

)
, B =

(
1 0
0 0

)
.

Note that A is oscillatory. The first approximate solu-
tion takes the form

x(τ0, τ1)(0) = exp (Aτ0)y(τ1)

=
(

cos τ0 − sin τ0

sin τ0 cos τ0

)(
y1(τ1)
y2(τ1)

)
.

(27)

The vector y(τ1) is determined under the condition of
no secular term (13) and is given by the solution of
the nonlinear system of equations

dy1

dτ1
− 1

2
y1 +

1
8
(y3

1 + y1y
2
2) = 0

dy2

dτ1
− 1

2
y2 +

1
8
(y3

2 + y2
1y2) = 0





. (28)

Both solutions y1 and y2 of (28) are nonzero. As the
system approaches the steady-state, the solutions be-
come y1 → 0 and y2 → ±2 or y2 → 0 and y1 → ±2.
In order to find the approximate solutions of (28), we
assume that the solution y is given by

y1(τ1) = a(τ1) cos ω(τ1)
y2(τ1) = a(τ1) sin ω(τ1)

}
. (29)

Substituting (29) into (28) and equating the coeffi-
cients of cos(ω(τ1)) and sin(ω(τ1)), respectively, we
obtain the nonlinear equation

da

dτ1
− 1

2
a +

1
8
a3 = 0

dω

dτ1
= 0





. (30)

Integrating both equations (30), we have

a(τ1) =
2√

1 + exp(−τ1 − c1)
ω(τ1) = ω0



 , (31)

where c1 and ω0 are the initial values of a and ω at
τ1 = 0, respectively. Hence, we have

y1(τ1) =
2√

1 + exp(−τ1 − c1)
cos ω0

y2(τ1) =
2√

1 + exp(−τ1 − c1)
sinω0.





. (32)

We then obtain

v(0)(τ0, τ1) =
2√

1 + exp(−τ1 − c1)
cos(τ0 + ω0)

u(0)(τ0, τ1) =
2√

1 + exp(−τ1 − c1)
sin(τ0 + ω0)





.(33)

Finally,

y1(τ1) =
2√

1 + exp(−τ1 − c1)
cos ω0

y2(τ1) =
2√

1 + exp(−τ1 − c1)
sinω0





. (34)

As an example, let us set the initial condition of (26)
to

u(0) = a0, v(0) = 0. (35)

Then, we have

ω0 =
π

2
, exp(−c1) =

4
a2
0

− 1. (36)

Substituting these values into (32) gives the first ap-
proximate solution

v(0)(t) =
2√

1 + (
4
a2
0

− 1) exp (−εt)
sin t

u(0)(t) =
2√

1 + (
4
a2
0

− 1) exp (−εt)
cos t





. (37)

The three graphes shown in Fig.1 demonstrate the ef-
fectiveness of the multiple-scales method by decreasing
the parameter ε. The solid lines show the first approx-
imate solution with the multiple-scales method. The
dotted lines are obtained with numerical integration
available in the Octave tool. When decreasing the pa-
rameter ε from 0.6 to 0.2, both transient curves get
closer. For ε ≤ 0.1, there is no visible difference.
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Figure 1: Comparison of the proposed method of mul-
tiple scales with numerical integration of Rayleigh’s
equation for ε = 0.6, 0.4, and 0.2. The notation ’eps’
denotes ε.

The solution of (28) that determines the first
approximation can be obtained by any numerical
method. In Fig. 2, the solution y2(τ1) is shown for
ε = 0.2. The envelope of the solution can be com-
puted separately. This is the merit of the multiple-
scales method.
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Figure 2: The slow-mode of the oscillation for ε = 0.2.

5. Conclusion
We presented the multiple-scales method for the

analysis of stiff nonlinear circuits expressed by au-
tonomous system of differential equations. At each
stage of higher approximations, we compute the so-
lution of a set of nonlinear differential equations that
are derived to avoid the presence of the secular term.
For higher dimensional systems, the numerical com-
putation of the product of the matrix exponential is
essential to obtain an accurate solution at each step
of approximation. In the given example, the solution
was obtained analytically by hand caluculations.
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