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Abstract—A Complex-valued Associative Memory
(CAM) stores not only training patterns but also
their rotated patterns. They reduce noise robustness.
In this paper, we introduce strong thresholds to the
neurons. Thresholds relieve storing rotated patterns
and improve noise robustness. If thresholds are sim-
ply used, their effect is absorbed in quantification of
complex-valued neurons. So we use strong thresholds
to improve noise robustness.

1. Introduction

Complex-valued Associative Memory (CAM) has
been studied as an advanced model of neural networks
(Jankowski et.al.[1]). The CAM can treat multi-state
information and is often used for storing gray scale pat-
terns (Aoki[3]). It is known that the CAM stores not
only training patterns but also their rotated patterns
(Kuroe[2]). The rotated patterns are typical spurious
patterns and reduce the noise robustness of the CAM.
In case of K quantification, there exist K − 1 rotated
patterns for each training pattern. In this paper, we
introduce thresholds to the complex-valued neurons in
order to improve noise robustness. Thresholds inter-
feres storing rotated patterns. However if thresholds
are simply used, their effect is absorbed in quantifi-
cation of complex-valued neurons. We adopt gener-
alized inverse matrix (Aoki[3]) for learning and intro-
duce strong thresholds so that the CAM can overcome
the quantification of complex-valued neurons.

We introduce a parameter t to control the strength
of thresholds. We call the parameter t the control
parameter. By computer simulations, we found out
that the control parameter t became more effective as
t grew until a certain level and the effect of t was al-
most constant when t was beyond it. Moreover our ex-
periences showed that strong thresholds improved the
noise robustness enough in case of P/N ≤ 0.1, where
P and N are the number of training patterns and neu-
rons. In particular, they are useful in case that P is
small andK is large. The condition P/N < 0.1 is often
enough large for applications. In fact, many applica-
tions of associative memories, for example Deguchi and
Ishii[4, 5], Hattori and Hagiwara[6], Osana et. al.[7],
Yano and Osana[8], Nakada and Osana[9] and Kita-
hara et. al.[10], require P/N < 0.1. Therefore the
strong thresholds are useful.

2. Complex-valued Associative Memory

In this section, we briefly describe the CAM.
First, we define complex-valued neurons. Complex-

valued neurons receive and produce complex num-
bers. Let S be the set {sk = exp(2kθK

√
−1); k =

0, 1, · · · ,K − 1}, where θK = π/K. A complex-valued
neuron takes sk ∈ K closest to the received complex
number. We define this map from complex numbers
to S as f(·).

Next, we construct the CAM. Let complex numbers
wji and γj be the connection weight from the neuron i
to the neuron j and the threshold of neuron j, respec-
tively. The connection weights require the condition
wji = wij , where w stands for the complex conjugate
of w. Let xi be the state of the neuron i. Then the
input sum Ij to the neuron j is defined as follows:

Ij =
∑
i 6=j

wjixi + γj . (1)

Finally we describe learning. Let N be the number
of neurons. If a vector x = (x1, x2, · · · , xN )T belonging
to SN , where superscript T stands for the transpose,
satisfies xj = f(Ij) for all j, it is called stable. Learn-
ing is to find the parameters to make given training
pattern vectors stable. If a noisy pattern x′ of train-
ing pattern x is given, it is expected to restore the
original pattern x. The ability to recover from noisy
patterns is called noise robustness. Noise robustness
is one of the most important problems of associative
memories.

3. Generalized Inverse Matrix Learning

We describe the generalized inverse matrix learning
in case that all thresholds are zero (γj = 0 for all j).
Let xp = (xp1, xp2, · · · , xpN )T be the pth training pat-
tern vector. And we consider N × P training matrix
X = (x1,x2, · · · ,xP ), where P is the number of train-
ing patterns. We define N ×N matrix W as follows:

W = X(X∗X)−1X∗, (2)

where the superscript ∗ stands for the complex conju-
gate transpose. The matrix (X∗X)−1X∗ is called the
generalized inverse matrix of X. Then it is clear that
the matrix W satisfies the relation W∗ = W. There-
fore the diagonal elements wjj are real numbers and
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the (i, j) element wij of W satisfies wij = wji. We
regard wij as the connection weights for i 6= j. The
diagonal elements wjj are never used for updating the
neurons. We set γj = 0 for all j. Definitely WX = X
is true. So we obtain xpj =

∑
i wjixpi for all p and j.

When a training pattern xp is given to the CAM, we
obtain the following equation for all j:

Ij =
∑
i 6=j

wjixpi = (1− wjj)xpj . (3)

Therefore all training patterns xp are stable unless
wjj ≥ 1 for some j.

For any k 6= 0, consider the pattern skxp, which is
called the rotated pattern of xp. When the rotated
pattern skxp is given to the CAM, the input sum Ij
to the neuron j is as follows:

Ij =
∑
i 6=j

wji(skxpi) = sk(
∑
i 6=j

wjixpi). (4)

Therefore the rotated patterns skxp are also stable
since the training pattern xp is stable. This fact is
called rotation invariance (Zemel et. al.[11]). As K
becomes large, two problems arise. One is that the
number (K − 1)P of the rotated patterns grows. It
causes that there exist more spurious patterns. The
other is that there exist rotated patterns in the neigh-
borhood of the training patterns. As K grows, the
states s1 and sK−1 approach 1. Therefore the rotated
patterns s1xp and sK−1xp approach xp. These facts
reduce the noise robustness of the CAM.

4. Generalized Inverse Matrix Learning with
Thresholds

In this section, we introduce the generalized inverse
matrix learning for the CAM with thresholds. The
thresholds are introduced to make the rotated pat-
terns unstable. It is necessary that the amplitudes
of the thresholds are enough large. To control the
amplitudes of thresholds, we introduce a parameter t.
We call it the control parameter. The control param-
eter t is a real number. All training pattern vectors
xp are extended to x̃p = (xT

p , t)
T . The learning ma-

trix X is also extended to the (N + 1) × P matrix

X̃ = (x̃1, x̃2, · · · , x̃P ). Moreover the matrix W is re-

placed by the (N +1)× (N +1) matrix W̃ as follows:

W̃ = X̃(X̃∗X̃)−1X̃∗. (5)

Then the matrix W̃ satisfies W̃ = W̃∗ and W̃X̃ = X̃.
Take the (j, p) element of W̃X̃ = X̃, where j ≤ N ,
and then we obtain∑

i

wjixpi + twj(N+1) = xpj . (6)

For all i and j such that i, j ≤ N and i 6= j, we

regard wij as connection weights. From W̃ = W̃∗, we
find wij = wji. Moreover we regard twj(N+1) as γj .
Thus we obtain the connection weights wji and the
thresholds γj . Suppose that a training pattern xp is
put on the CAM. Then the input sum Ij to the neuron
j is as follows:

Ij =
∑
i≤N

i 6=j

wjixpi + γj (7)

= (1− wjj)xpj . (8)

From W̃ = W̃∗, we find that wjj is a real number. All
training patterns xp are stable unless wjj ≥ 1 for some
j. Suppose that a pattern xp is stable and a rotated
pattern skxp is put on the CAM. Then the input sum
Ij to the neuron j is as follows:

Ij = sk
∑
i≤N

i 6=j

wjixpi + γj (9)

= sk(
∑
i≤N

wjixpi + γj − wjjxpj − γj + skγj)

(10)

= sk(xpj + (sk − 1)γj − wjjxpj) (11)

= skxpj(1− wjj + (sk − 1)γjxpj). (12)

If the condition

|arg(1− wjj + (sk − 1)γjxpj)| > θK (13)

is true for some j, where arg(z) stands for the phase
of complex number z, the rotated pattern skxp is not
stable. Since the pattern xp is stable, 1 − wjj is a
positive real number. So if the amplitude of γj is too
small compared with 1−wjj , the condition (13) is not
true. We have to determine the control parameter t
such that amplitudes of some γj are sufficient large.

In case of t = 0, X̃∗X̃ = X∗X is true. The (i, j) el-

ements of W and W̃ are same for all i, j ≤ N . There-
fore in case of t = 0, the proposed generalized inverse
matrix learning is the conventional one. The proposed
generalized inverse matrix learning is an extension of
the conventional one. And we expect that the control
parameter t plays a role in determining the scale of
thresholds. In case of t = 1, the proposed general-
ized inverse matrix learning is equivalent to that with
a constant input neuron which always produces one.

5. Control Parameter and Thresholds

We expect that the larger the control parameter t
becomes the larger the thresholds γj become. However
it is not trivial. We examined the relation between
the control parameter and the thresholds by computer
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Figure 1: Average amplitudes of wji and γj

simulations. The computer simulation was performed
under the condition of N = 100,K = 8 and P = 10.
The number of trials for each t was 1000. The training
data was generated at random.

Figure 1 shows how the amplitudes of connection
weights wji and thresholds γj depend on the control
parameter t. The x-axis shows the control parame-
ter t. The y-axis shows the average amplitudes of
the connection weights wji and thresholds γj . The
average amplitude of the connection weights wji was
almost independent of t. The average amplitude of
the thresholds γj increased until a certain level of t
and was almost constant beyond the level. Now we
are interested in the ratio r of the average amplitude
of the thresholds γj to that of the connection weights
wji. The ratio r is required to be enough large. This
experiment implies that the ratio r rapidly increased
for small t and was almost constant for enough large
control parameter t.

6. Noise Robustness

In this section, we perform computer simulations in
order to examine the effect of control parameter t for
noise robustness.

The simulation has been carried out under the con-
ditions N = 100, K = 10, 20 and 30, P = 10, 20 and
30, and t = 0, 1 and 10. In each condition, 100 training
data sets were generated at random. For each training
data set and each noise level L, 100 trials were carried
out by the following procedure.

1. A training pattern was selected at random and
put on the CAM.
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Figure 2: Noise robustness

2. L neurons were selected and replaced by any
states at random.

3. If the CAM recalls the original pattern correctly,
we regarded the trial as successful.

The condition t = 0 means the case without thresh-
olds. The condition t = 1 means the case with a con-
stant input neuron which always produces one. In Fig.
1, the amplitudes of thresholds rapidly increased in
case of t < 10 and were almost constant in case of
t > 10. We can expect that the effect of thresholds is
independent of t in case of t ≥ 10. In our experiences,
actually, the simulation results in cases of t = 10 and
20 were almost same.

Figure 2 shows the simulation results. The x-axis
shows the noise level. The y-axis shows the success
rate. In the simulation results, we can find the follow-
ing facts.

1. In all cases, the noise robustness was more im-
proved as t increased.

2. In case of t = 1, noise robustness was just a bit
improved.

3. The differences in improvement of t = 1 and 10
were larger as P was smaller or K was larger.

Our experiences show that the strong thresholds
work well especially in case of P/N ≤ 0.1. The ability
is often effective for many applications of associative
memories as Table 1. All of them require P/N < 0.1.
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Applications P/N
Deguchi and Ishii[4] 0.04
Deguchi and Ishii[5] 0.075

Hattori and Hagiwara[6] 0.04
Osana et. al.[7] 0.011

Yano and Osana[8] 0.009
Nakada and Osana[9] 0.008
Kitahara et. al.[10] 0.008

Table 1: P/N of some applications

7. Conclusion

In this paper, we proposed generalized inverse ma-
trix learning for the CAM with thresholds to improve
noise robustness. The CAM without thresholds stores
many rotated patterns, which reduces the noise ro-
bustness. The thresholds can prevent the CAM from
storing rotated patterns. However, if the thresholds
are too weaker compared with the connection weights,
we cannot expect the sufficient effect of the thresh-
olds. So we introduce the control parameter t to en-
large the thresholds. By the computer simulations, we
found the following results for the ratio r of the average
amplitude of the thresholds to that of the connection
weights.

1. In case of small t, the ratio r increased as t grows.

2. In case of large t, the ratio r was almost constant
and independent to t.

Moreover, we carried out the computer simula-
tions to test noise robustness. The simulation re-
sults showed that our proposal improved noise robust-
ness. The improvement was better, as the number P
of training patterns was smaller or the number K of
states of neuron was larger.
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