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Abstract—Cortical columns and their typical wiring are easily reach the region of optimal synaptic input. This ar-
a puzzling phenomenon that is generally interpreted to hagament, however, fails in the case of LSM built on spiking
computational benefits. Echo State or Liquid State Maaeurons with a continuous membrane potential.
chines are recurrent neural network paradigms that haveln our contribution, we will follow and expand the ap-
been proven successful in the learning of action sequencespach taken by [6]. Contrary to the academic focus exhib-
an aspect crucial to robotics. We scrutinize the recent-asséed in their paper, here we critically re-evaluate theidfin
tion made by Mass and scholars that when to these framiags, claims and extrapolations in the application-cestter
works biologically inspired neural network topologies areontext. As the general result, our experiments fail to con-
overlaid, they will increase theirigciency. A vast parame- firm a straightforward extrapolation of their claims to the
ter survey performed on typical applications does, howeveapplication context. The comparisons we perform had in
not support this hypothesis. some cases to remain qualitative, as we ufierdint bench-
mark tasks and perform extended topological surveys. Both
o is necessary to prove that our observations are robust with
1. Echo stateand liquid state concepts respect to real world perceptional tasks and that they are
. . . o ._salient in the context of machine learning. Since our fo-
Cortical cqumljs and their typical wiring are a puzzlln.gcus is on neural architectures with a biological blueprint,
- . "We focus on spiking neural networks. Our overall find-
some beneficial computationafect. It has already been ing across all benchmarks and a great variety of networks

;em;irrlied r;[gati Er::hig lsﬁitﬁ ?A??hr:nﬁsn(ESthN\?{t'ttr an;log that biologically motivated and random network topolo-
eurons and sigmoidai transter functions sho € perio pies perform essentially equally well, which corroborates
mance sensitivity with respect to changes of the reservoir

topology[1, 2]. In the quest of understanding the brain, fol n original findings by [1].

lowing the idea to take th tI ted cort A schematic overview on the E3DNSM is given in
owing the idea fo take the recurrently connected cortex Eﬁg. 1. Reservoir neurons receive external input by the sig-
the blueprint for artificial neural networks, spiking nenso

) . ) . —~ nal and recurrent input from other reservoir neurons. The
were introduced into the reservoir. This led to the ”quumf1 P

State Machines” (LSM) network paradigm ([3]). In these — )_I_?_e_:_s__e;_r_\(ggj____: 0
networks, a marked performance increase was reported if i I I i I

within their reservoir a refining topology was implement%L
that in some sense was ’close’ to that found in the mam-
malian cortex [3, 4, 5, 6]. This interesting phenomenon | L Js
was investigated in details in [6], by comparing an LSM ' W ,
endowed with a layering connectivity as dealt with in cor-

tex, with LSM networks based on random wiring. For therigure 1: LSM model. Stimulusi fed into the reservoir should
layered network, a significantly improved computationabe associated with the 'correct’ output The recurrent reservoir
performance was reported. Recent attempts [7, 8] to respology is encoded by matriW. The matrixWs, is trained.

solve the apparent contradiction between ESN and LSM

performance attributed the phenomenon to thfeetince network topology we study is captured in the connection
between the hyperbolic tangent vs. the Heaviside transferatrix W, the entries of which are the synaptic weights.
function, i.e. to analog vs. digit@piking neuronal infor- For a network realization, only the connectjgnoebabilities
mation processing used in these paradigms. One findimgll be prescribed, contrary to what the term 'cortical mi-
was that LSM built on spiking neurons with digital mem-crocircuit’ - the term abundantly used in [6] - might evoke
brane potential, were superior to fully analog neuron basextherwise. Excitatory (inhibitory) neurons, as the costrse
LSM, particularly in conditions of sparse connectivityifty characterization of structure within the reservoir, are im
ically 3 synapsegseuron) or sparse activity (typical for bi- plemented by positive (negative, respectively) weights.
ological conditions), the reason being that the former more In the ESNLSM context, learning is a supervised pro-
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cess aiming at associatirigpairs of input/ output se- nt+n) =)+
quencedgu(t), Ya(t)ilieq, i Of individual sequence length
Ti (so thatt € {1,..,T;}). Upon stimulation byu(t);, the Here,r; describes an additional continuous variable that
liguid reservoir ofM neurons will generate a state vectorcontrols the subthreshold dynamics and the refractoriness
X(t);. LetT > max(T;) denote a maximal time of observa- After v; has reached the threshalgh, = 30, a spike is trig-
tion, and letX be thek x T-matrix of liquid states, where gered, which resets to 1,v; to —65 andr; tor; + 2.
T is the number of the reservoir neurons to be read out. For both neuron types, the synapses are modeled by an
Let similarly denoteYy = {yq(t)}; thek x T Matrix of the exponential decaying postsynaptic potential of the form
desired associated pattern indexed by S(t+7) = exp(—i)s(t), with the synaptic decay time

To approximate the desired relatig®'x(t) = yi4(t), Sy
by using the (Moore-Penrose) pseudo-invetsef X, the
least-squares optimized read-out matrix

2 1
Toovit+ D = 15" @

scalersyn = 2 ms. The axonal delays and the refractory
periods are given by a fixed integration stepref2 ms, for
all experiments.
WOU ~ Y X+ We examine two reservoir topologies. In the first net-
work model (El), the biological blueprint is simplified to an
is obtained. excitatory and an inhibitory neuronal population and con-
As a practical example, we consider the learning of thgections within and between them. In the second model
response consisting in a temporal pattgit) of length  (LEI), also a laminar organization of the neurons, as ob-
T =100. During the training phase, the input and the deserved in the mammalian cortex, is implemented.
sired output signal are fed into the reservoir. After a tran- The biologically inspired network model used by [3]

sient phase, the optimized output mat&"!is obtained as consists of a three-dimensional grid of neurons compris-
the pseudo-inverse of the matrix of dimensionM (where  jng 3 x 3 x 15 = 135 neurons. The probability for

M is the dimension of the output vector, often equal t¢, connection from neuror to neuroni is given by
T), applied to the desired output vectgt) of dimension o I%—%2 o e

T. During recall, from the input signal via the reservoirpm”(" )= ca J)eXp(_T)’ where |% - Xjl is the
read by the optimized readout neurons, the desired outpticlidean distance between tiih and thej'th neurons’
should emerge. For the learning of a set of cardinliey ~ POSitions on a 3-dimensional grid representing the neural
patterns, the reservoir is trained by using one of the pagternetwork. 1 controls both the number and typical length
at random. After this period, the optimization involves-tak ©f the connections. C(i, j) establishes the desired bio-
ing the pseudo-inverse of tHe x M-dimensional matrix inspired excitatory-inhibitory connectivity, where thalv
X*, applied to the matrix of dimensiokx T of the de- UesC(E.E) = 03, C(E,I) = 04, C(I,E) = 0.2 and
sired outputdy. For associative tasks, a minimal distanc€(l. 1) = 0.1 are used (wher# indicates an excitatory, and
classification is performed, usually by using the Euclideah@n inhibitory neuron). If a connection is made, the synap-
distance. tic weights are chosen ag(E,E) = 30, w(E,I) = -19,

In the networks investigated, two prominent models of(!, E) = 60 andw(l, 1) = —19. Rather than being geomet-
neurons will be used alternatively. rically segregated into layers, in this model the neuross ar

The time evolution of the leaky integrate-and-fire neuron i§2gged with diferent properties. The model will be com-
defined by pared to a control network ('El control’) whef@ is uni-
formly set to 03 and where the synaptic weights are drawn
Vit +7) = exp(—i)vi(t) + Z Wi s (t) + Z Win, Uk(t). from a uniform distribut_ion_ on [a1], endovyed with a sign
Tm f K to distinguish between inhibitory and excitatory neurons.
) ] ) The more detailed cortex-inspired LEI network topol-
Here, vi is the membrane potential of thith neuron that o4y considered in the present context first by [6] consists
decays expone_ntlally_ in t|me_W|th_membran_e time constaf three layers (8, 4 and 5), each of them comprising an
™m = 30 ms. 7 is the integration time-stes; is the post- gy citatory and an inhibitory population. As in the unlay-
synaptic potential at the synapses innervated byjte oreq (E1) circuit, we chose a population consisting of 135
neuron, which is weighted by the synaptii@encywij neyrons. The connection probabilities and strengths be-
med|at.|ng betW(_aen the presynaptic ne_u;alnd the post- yween the populations were chosen as in [6]. The network
synaptic neuron. uy denotes the k'th input component, i |argely feed-forward. There are, however, recurrent con
weighted bywin,, the weight of thek'th input component - ctions within the individual layers. The topology alse de
to neuroni. If v reaches the threshoM = 1, a spike is  fineg which neurons receive input and which neurons are to

triggered, which resets to 1 andv; t0 Vies = 0. .. beread out from. Input to the network is mostly by means
The time evolution of the fast-spiking simple Izhikevich projections to layer 4 (input stream 1 in [6]). LayeB2
neuron model [9] is given by the coupled equations plays the role of the hidden layer, while the output neu-

4 rons are confined to layer 5. The translation from the dy-
Vi(t+ 1) = vi(0) + | 756 V(O + 5vi(D) + 30 Zj""iisi(‘ﬂzklwinik“k(‘)J*’i(‘)+ 152. namic synapses used in [6] to our exponential synapses is
() achieved by setting our synaptic weights equal to the steady
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state strength) of [6]. The control network ('LEI control’) os memoryless , integration
is obtained by replacing at each synapse with a probabili

p the pre- and postsynaptic neurons by neurons chosen Mee—————

random from the pooled neuronal ensembles of the sar 0s

kind (excitatory or inhibitory). The rewiring proceduresha i i

the dfect of merging the three layers, while retaining the ’ e o T~
overall connectivity and weight distribution between the o 06

excitatory and inhibitory populations. This allows us tc S
examine the impact of the segregation of LSM into layer » r

and interlayer connectivity for typical applications. o, Mmemoryles 0 integratior

We used two ways of reading out the reservoir. Since the ™ : e e el
reservoir maintains the temporal information, in the origia , ., » ] L ./(r
nal LSM design the readoutisemorylessFor every input 0as :‘/'457331131: o1t/
vector, an output vector is generated, allowing "anytime o J
recognition” [3]. In classification tasks it is, howeverche 00 oz o4 o5 os | _ 0z 04 o o8 1
essary to have a memory span that is of the same order memoryles e in;eg'rar;or -
of size as the stimulus length. Otherwise, the LSM will PO e e s 2
confuse dfiferent stimuli classes when they contain simi-b 3 oo m g 08-8558 Lo ar
lar parts (e.g. phonemes in speech recognition). As an al- =, / ] 0af
ternative readout method, we used firing rates, computed ] 02
over multiple input steps. For every stimulus, one output ~ *® 0z 04 05 os 1 00 0z 04 05 08 10

vector is generated consisting of the mean firing rates of
the individual neurons, averaged over the whole stimulus

length. Output is generated only after the stimulus has tefigyre 2: Recognition rateR of EI networks (a) Arabic Digit

minated. With this method, we observe greatly improvegcognition, b) Auslan Sign recognition). Top panét as a

recognition, although it could not be considered a prop@inction of connectivityl (memoryless and integration readout).

LSM procedure. We will refer to this readout Bdegra- Lower panelsR as a function of inputeservoir size ratid. Lo-

tion readout. cal connectivity § = 2) was used, except for Izhikevich * using
no connectionsA = 0).

2. Resultsand Discussion

To assess thefiicacy of the networks, and to attain a[13]. Connections can even lead to worse performance in
generality of observations, we use two common time seri¢se more realistic Izhikevich neuron model. The El net-
classification benchmarks. The single Arabic digit speealwork with microcircuit structure does not perform signifi-
recognition task [10] comprises time series of 13 Mel Freeantly better than the control network. Whereas the neuron
guency Cepstral Cdicients (MFCC) for 10 classes of dig- model and the circuit parameters seem not to greatly influ-
its spoken by 88 subjects. The Australian Sign Languagence performance, the readout method clearly has an im-
(Auslan) sign recognition task consist of time series of 2pact. Memoryless readout causes much lower recognition
parameters for 95 signs, recorded from digital glove andates. One might argue that the reason for this is in the ap-
position tracker equipment from a native signer [11]. Thespliance of the input signal to all neurons, constantly over-
tasks are directly related to the kind of computation that i&riting memory that otherwise would be retained in hid-
expected from a spiking neural net, in contrast to abstraden neurons. To test this objection, we also examined the
computations on spike trains which may include signifirole of hidden neurons (Fig.2, lower panels). Extrapotatin
cant experimenter bias. The datasets are freely availabftem the insight from feed-forward networks, hidden neu-
[12]. The much larger number of classes in the Auslan tagions are thought to enhance the computational capabilities
might be responsible for the generally weaker recognitioof the network also in the case of recurrent networks. The
rates the networks achieve in it. The remarkable consiamount of hidden neurons is tuned by randomly selecting
tency of our observations across both tasks yet is evidenagth a probability equal to a desired input ratio a subset of
for a strong independence of the observations from an opeurons that will receive input, i.e. transforming those-ne
timization of network size to task size. Contrary to whatons into input neurons. As in [3] and [14], the connectivity
is often claimed, local connections & 2) render no ad- was restricted to local next neighbor connectiohs=(2),
vantage over other degrees of connectivity, see Fig.2, upxcept for one test using lzhikievich neurons with= 0.
per panel . Notably, not connecting the neurons at all do&%ith both readout methods, we observed no benefit from
not lead to a decrease in the recognition rate of the LSMyjdden neurons, and, moreover, they also fail to remedy
suggesting that no integration or computation is owed tthe low memoryless readout performance. If hidden neu-
synaptic interaction. This has previously been observed ligns were beneficial to the network, we should perceive a
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maximum read-out at some optimal infreservoir neuron input matrixWi, is not exactly tuned to the recurrence ma-
ratio I, which, however, is absent. In the Arabic Digit taskrix W, the network’s memory capacity is the same as that
at 1 = 0 we observe for memoryless readout that the peof an ensemble of entirely disconnected neurons. Only net-
formance does not consistently increase with the numbesorks with linear neurons and intrinsic long feed-forward
of actually used neurons (i.e., beyone 0.1, see 'lzhike- connectivity show a substantially increased memory capac-
vich *). This suggests that nonlineaffects between the ity. Against this background, it is not surprising that also
input components do not enhance recognition (Wigh0.1  biologically inspired circuits cannot not per se resolvis th
there are on average B3neurons that receive input while situation.
the input dimensionality is 13). In the Auslan task we see a For technical applications of LSM, we conclude that the
monotonous recognition rate dependence on input neurogadout method must be carefully chosen with respect to
ratio, which can be explained by the fact that for most rathe application. In the present work, following and focus-
tios | the number of neurons that receive input is smalleing on biological blueprints, we did not tune our LSM for
than the input dimensionality (i.d.; 135< 95). optimal performance. Much higher recognition rates could
LEI networks were used in a third experiment (Figure 3have been achieved, by choosing a larger number of neu-
to examine the impact of the biological layering details, byons and optimized time constants. In this sense, we em-
comparing it to a randomized version. No significaffitet phasize that our work does not exhibit a deficiency of the
on performance emerges when using the biological circlBSM/LSM networks, but speaks against a too simplistic or
compared to a purely random one. Hence the layer segteo wide computational interpretations of the physioladjic
gation and the special interlayer connectivity of thiswitc facts of the columnar organization of the mammalian brain.
does not lead to an improvement over the monolithic ran-
dom circuit. The overall lower performance of both of this
circuits versus the El circuits in the case of the integratio References
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