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Abstract—This paper describes the techniques of Sin-
gular Spectrum Analysis (SSA) and forecasting by the
Linear Recurrent Formulae (LRF), which are applied to
monthly precipitation and lake-sediments in Kenya. By the
SSA algorithm, information, such as a trend, seasonal peri-
odicities, anomaly cycles, and noise, can be extracted from
these data series. And then from the results obtained by the
SSA, it is possible to forecast the data which are assumed
to be governed by the LRF. The goal in this paper is to in-
vestigate the properties of the equatorial climate changes,
where the global warming is remarkable.

1. Introduction

Climate problems through the term global warming have
received a lot of attention in recent years. Interest in the
topics spans not only meteorologist and geologist but also
physicist, economist and so on as interdisciplinary subjects.

Data observed in nature generally consist of complicated
components such as exogenous and endogenous factors.
These data series have successfully been analyzed by a
number of statistical tools. If such noisy data are, for in-
stance, analyzed for a forecast, the noise has to be reduced
from it. In other words, the underlying deterministic dy-
namics in the data will be extracted by the noise reduction.
In some of the previous research the modelling and fore-
casting have often been performed by a linear model. How-
ever, since most of the actual data series are currently well-
known as a nonlinear nature, it is necessary to consider both
the linear and nonlinear models for the modelling and fore-
casting. As one of the ideal methods, Singular Spectrum
Analysis (SSA) is powerful and useful, and it is especially
applicable for the analysis of time series with complex sea-
sonal components and non-stationarity, i.e., it is not nec-
essary to assume satationarity of the series or normality of
the residuals. The technique is defined as a nonparametric
technique of the time series analysis including the statisti-
cal tools such as the classical analysis, dynamical system,
signal processing, and so on. Another advantage of this
method is that it can well be applied to small sample sizes.

An early study of the SSA is described in the papers by
Broomhead and King [1]. Then, the idea of the SSA is
independently developed in several groups in Russia, UK,
and USA. Especially, the theoretical and practical founda-

tions of this technique are described in the book by Golyan-
dina, Nekrutkin, and Zhigljavsky in the Russian group
(2001) [5].

The purpose of SSA is to decompose the original data
series into some components with useful and interpretable
information (e.g. a slow trend, oscillatory components, and
a structureless noise). Their decomposed components are
of substantial importance for time series forecasting by the
Linear Recurrent Formulae (LRF).

In this paper the Caterpillar-SSA proposed by Golyand-
ina et al. (2001), is applied to data about precipitation and
lake-sediments in Kenya in order to compare present cli-
mate changes with a paleoclimate and to forecast the new
data point by using the LRF [2–7,9–16].

2. Singular Spectrum Analysis

SSA aims to decompose the observed data series into
some meaningful subseries, which are in general identified
as a slowly varying trend, harmonic (periodic and quasi-
periodic) components, and noise. These kinds of compo-
nents show essential properties of observed data.

The algorithm of the method generally falls into two
stages, the first stage: decomposition and the second stage:
reconstruction, and then each of them has two following
separate steps: embedding (step 1) and Singular Value De-
composition (SVD) (step 2) in the first stage, and grouping
(step 1) and diagonal averaging (step 2) in the second stage.
The reconstructed data series are then used for forecasting.

2.1. First Stage: Decomposition

Embedding of the step 1 in the first stage is to transfer
a one-dimensional seriesY = (y1, · · · , yN) into the mul-
tidimensional series [X1 : · · · : XK ] with vectors X j =

(y j , · · · , y j+L−1)T ∈ RL ( j = 1, · · · ,K), whereK and L,
which are defined as the integer parameters for the SSA,
can be described byK = N − L + 1, thus the SSA has sub-
stantially the single parameterL of the embedding, called
window length, restricted by 2≤ L ≤ N/2. The matrix
which consists of the vectorsX j is defined as the trajectory
matrix, X = [X1 : · · · : XK ] = (xi j )

L,K
i, j=1. Since the trajec-

tory matrix X is a Hankel matrix, all the elements along the
diagonali + j = constare equal [8].
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In the step 2, the Singular Value Decomposition (SVD) is
applied to the trajectory matrix, which can then be written
as X= X1 + · · · + Xd, where Xl = Ul

√
λlVT

l (l = 1, · · · ,d)
defined as a rank-one orthogonal elementary matrix. The
collection (

√
λl ,Ul ,Vl), which are a singular value, empiri-

cal orthogonal functions (EOFs), and principal components
(PCs), respectively, is called thel-th eigentriple of the ma-
trix X. d is the number of non-zero singular values (i.e.,√
λ1 ≥ · · · ≥

√
λd > 0). The relationship among the

terms in the collection can be described byVl = XTUl/
√
λl .

The fact that
∑d

l=1(
√
λl)2 is equal to the squared Frobenius-

Perron norm of the trajectory matrix X, and also (
√
λl)2 is

the squared Frobenius-Perron norm of the elementary ma-
trix X l [2, 5–7], means that the ratio

∑r
l=1 λl/

∑d
l=1 λl mea-

sures the degree of approximation of the trajectory matrix,
that is, it shows a contribution of the elementary matrices
to the trajectory matrix.

2.2. Second Stage: Reconstruction

So calledeigentriple groupingwill be performed so that
the index set{1, · · · ,d} of the elementary matrices is refor-
mulated intomdisjoint subsetsI1, · · · , Im:

X = X1 + · · · + Xd = X I1 + · · · + XIh + · · · + X Im, (1)

with X Ih = Xh1 + · · · + Xhs, h ∈ {1, · · · ,d}. These repre-
sented matrices are defined asm resultant matrices. In or-
der to find a proper parameterr for the grouping, singular
spectrum,S = { √λ1, · · · ,

√
λd} and weighted-correlation

(w-correlation),ρw are introduced:

ρw
i j =

(Y(i),Y( j))w

||Y(i)||w||Y( j)||w , (2)

where (Y(i),Y( j))w =
∑N

k=1 wky
(i)
k y( j)

k , ||Y(i)||w =
√

(Y(i),Y(i))w

(i, j = 1, · · · ,d), andw is defined bywk = min(k, L,N −
k + 1). The seriesY(i) = {y(i)

1 , · · · , y(i)
N } is available from the

elementary matrix by using the diagonal averaging which
is defined as follows:

y(i)
n =



1
n

∑n
m=1 x(i)

m,(n−m+1) (1 ≤ n < L)
1
L

∑L
m=1 x(i)

m,(n−m+1) (L ≤ n < K)
1

N−n+1

∑N−K+1
m=n−K+2 x(i)

m,(n−m+1) (K ≤ n ≤ N)
. (3)

If the reconstructed seriesY(i) and Y( j) are highly corre-
lated, then they can be grouped into a same component. In
contrast, if the w-correlation between these two series is
quite low or zero, it means that they are well separable into
different groups. The series grouped by the result of the
w-correlation can be represented as a decomposed form of
the initial series,Y = Y(I1) + · · · + Y(Im), where the labels of
Is are equivalent to themdisjoint subsets in the r.h.s. ofeq.
(1).

2.3. Forecasting: Linear Recurrent Formulae

The SSA forecasting is in general started with the as-
sumption that the data series is approximately governed by

the Linear Recurrent Formulae (LRF) [4–7,9–13,15,16]:

yi+d =

d∑

k=1

akyi+d−k, 1 ≤ i ≤ N − d, (4)

whered is the dimension for forecasting anda1, · · · ,ad are
defined as coefficients for the LRF. Note that if the original
data seriesY satisfies an LRF, there exist at mostd non-
zero singular values (

√
λ1 ≥ · · · ≥

√
λd > 0) within a

window lengthL. Therefore, in this forecasting technique
it is necessary to prepare at most d elementary matrices Xi

in order to reconstruct the series.
The SSA recurrent forecasting algorithm can be ex-

plained as follows: Recall the eigenvectorU ∈ RL com-
puted in the SVD step. Let us denote that the vector of
the firstL − 1 components of theU asU∇ ∈ RL−1 and set
ν2 = π2

1 + · · · + π2
r < 1 as a sum of the square of the last

components (πi := uLi , i = 1, · · · , r) of U. It can be proved
thatyL = a1yL−1 + · · · + aL−1y1 where the coefficients

A = (a1, · · · ,aL−1) =
1

(1− ν2)

r∑

i=1

πiU
∇
i . (5)

3. Application

The data analyzed and forecasted by the SSA in this
study are precipitation and lake-sediments profile in Kenya
to investigate the structure of climate in the equatorial zone
of East Africa.

3.1. Data: Precipitation and Lake-Sediments

Precipitation shown in the figure 1, had been recorded at
the stations of Kenyan three towns, Nakuru, Naivasha, and
Narok, with different time length.
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Figure 1: Monthly precipitation in Nakuru, [1904-1991]
(left panel), in Naivasha, [1950-1985] (middle panel),
and in Narok, [1913-1991] (right panel) from GHCN v2
database.

A lake-sediments profile had been taken from the lake
Nakuru, which is shown in the figure 2 (top). The bottom
one shows the color intensity of the profile. Depth of this
profile is ca. 4.6 cm, which corresponds to the time length
for ca. 63 years [17].

3.2. Analysis

The first mode component extracted by the SSA is in
general a slowly-varying trend. The figure 3 shows that
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Figure 2: Lake-sediments profile from the lake Nakuru
(top) and the color intensity of a layer shown on the red
line in this profile (bottom). The depth is ca. 4.6 cm (for 63
years). It becomes deeper toward the right. The color inten-
sity is supposed to be linked with rainfall variability [17].

the larger window lengthL, the slower the trend variation.
The component can be shown as a smoothing for different
purpose.

1920 1940 1960 1980
0

50

100

150

Year

1−
st

 E
ig

en
tri

pl
e

Trend Extraction of Precipitation

 

 

L=12
L=36
L=60

0 20 40 60
50

100

150

Year [B.P.]

1−
st

 E
ig

en
tri

pl
e

Trend Extraction of Lake−Sediments

 

 

L=12
L=36
L=60

Figure 3: The trends of precipitation (left panel) and lake-
sediments (right panel) in Nakuru forL = 12, 36, and 60.
The longer L, the more slowly-varying is the trend.

Group 1 2 3 4 5 6

Nakuru 12 6 4 15 3 10
Naivasha 12 6 13-14 68 10 –

Narok 12 6 4 68 25 15
Sediments 46-47 35 27 23 17-19 13-15

Table 1: The groups with oscillation components for
L =60. The values show monthly periodicities.

The table 1 lists the periodicity and quasi-periodicity of
harmonics components from the precipitation and the lake-
sediments.

From the results of precipitation, indeed seasonal cycles
are dominant in all the data because such periodicities are
shown in the first 3 groups. On the other hand, in other
groups of the higher modes, several irregular cycles in an
annual sense are shown. Since these results show partly
common cycles (10, 15, and 68 months cycles), they may
be considered as individual characteristics in this area. Al-
though the rest of the components is in general assumed as

noise, it still remains a matter of debate because they are
not well interpreted.

The result obtained from the analysis of sediments is that
the dominant periodicities are obviously longer than those
of precipitation.

3.3. Forecast

The LRF technique for forecasting the new data points
needs another parameterr in theeq. (5) which can be pro-
duced through the window lengthL, which will be used to
control an accuracy of the forecast. In order to find such
optimal parameters, let us measure the Mean Absolute Er-
ror (MAE := 1

n

∑n
i=1 |yi − ỹi |, whereyi is an original data, ˜yi

a forecasted value, andn the number of forecasted points. )
between the forecasted value and the original data by vary-
ing the window lengthL.

In this paper, the window length parameterL will be var-
ied from 12 to 120 and then let us define it as a parameter
optimal in the sense of a prediction error when the MAE is
minimal.

The results are depicted in the last 6 points of each data
in the figure 4. All of them can approximately be fore-
casted. Their̂Ls are equal to 49 (Nakuru), 98 (Naivasha),
48 (Narok), and 120 (Lake-sediment), respectively. This
means that both data complexities consist of the compo-
nents of similar climate background. On the other hand,
the value ofL̂ for Naivasha is relatively high. As a prime
suspect, it would appear that the amount of data observed
in Naivasha is smaller than in the other two towns.L̂ of
the sediments data results in an even higher value. This
means that these sediments data have already been simpli-
fied, i.e., there is a possibility that some information van-
ished. Therefore, the forecast of the sediments data can be
achieved with the small errors.
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Figure 4: Forecasts; Nakuru for̂L = 49 (left-top panel),
Naivasha forL̂ = 98 (right-top panel), Narok for̂L = 48
(left-bottom panel), and Lake-sediment forL̂ = 120 (right-
bottom panel).

4. Conclusions

In this study precipitation and lake-sediments profile in
Kenya have been analyzed and forecasted by using the
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SSA.
The dominant information of these precipitation are

some seasonal periodicities, 12 months, 6 months, and 4
months, which mean that cycles such as rainy and dry sea-
sons are regularly repeated in a year. In particular, since
there are two rainy seasons in Kenya (in Spring and Au-
tumn), the interval corresponds to a 4 months cycle. As
minor properties besides the above cycles, some irregular
cycles can be found in the higher modes. These kinds of
properties may be considered as cycles not belonging to
the seasonal one. From the analysis of the lake-sediments
profile, the results is that the dominant cycle is longer than
that of precipitation.

In the SSA forecast a complexity of the observed data
can be obtained by the parameterL. The precipitation in
Nakuru and Narok can be forecasted by an almost equiv-
alent optimal parameter̂L. The lake-sediments data ana-
lyzed as a hint about a paleoclimate structure can be fore-
casted by a relatively largêL, which means that the struc-
ture of this data set is simpler than that of the other data
sets.
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