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Abstract—It is well known that the jointly connectivity
and sequential connectivity are two fundamental concepts
in multi-agent systems. We discover that the jointly con-
nectivity is equivalent to sequential connectivity if the com-
munication topology has self-loops at each node. Based on
the above result, the consensus of discrete-time multi-agent
systems is then given under the condition of jointly connec-
tivity by constructing a sequentially connected sequence.
The above proof greatly simplified the former proofs.

1. Introduction

A multi-agent system (MAS) is a system consisted of
multiple interacting intelligent agents. Examples include
birds flocks, sheep herds, fish schools, online trading, dis-
aster response, multi-robot coordination, economic sys-
tems, and so on. Over the past decades, numerous mod-
els are proposed to characterize and analyze MAS, includ-
ing Vicsek model ([1]), Boid model ([2]), linear iteration
model ([3], [4], [9], [7]), and so on. Recently, MAS has re-
ceived an increasing attention from mathematics, physics,
engineering sciences, and social communities ([6], [8],
[10]).

As one of the simplest MAS models, linear iteration
model updates the state of each agent by using the linear
average of all states of its neighbors ([7], [11], [12]). Some
known results have indicated that all states of the linear it-
eration model will converge to some identical value under
the condition of jointly connectivity ([4], [7], [5], [9]) or
sequential connectivity ([10]). As pointed out in [10], the
sequential connectivity is a much more stronger condition
than the jointly connectivity and the joint connectivity does
not implies the sequential connectivity. In this paper, we
will bridge the gap between the sequential connectivity and
the jointly connectivity under some suitable conditions.

According to [4], [5], and [9], the linear MAS can con-
verge exponentially under the condition of jointly connec-
tivity. It should be pointed out that the above results are
obtained based on the theory of infinite matrices products
introduced by Wolfowitz in [3]. From [3], the convergence
condition of the products of infinite matrices is that there
exists a uniformly lower bound for the nonzero entries of

all matrices. However, in this paper, we will prove that the
above uniformly lower bound condition is not always nec-
essary for the consensus of the linear MAS.

In [7], Blondel and his colleagues introduced a new ap-
proach to prove the consensus of discrete-time MAS with-
out using the matrices products. Unfortunately, the above
method cannot be generalized to the case of joint graph
with a spanning tree. To overcome the uniformly lower
bound condition of matrices products approach in [3] and
the limitation of method in [7], a new technique is pro-
posed to prove the consensus of discrete-time multi-agent
systems under the same condition of jointly connectivity in
this paper, called sequential connectivity approach.

This paper is organized as follows. Section 2 introduces
several necessary preliminaries on graph theory and matrix
theory. The problem is formulated in Section 3. In Section
4, a novel approach is then given to prove the consensus of
discrete-time MAS. Finally, some concluding comments or
suggestions are given in Section 5.

2. Preliminaries

A graph G = (V, E) is composed of two sets V and
E, where V = {1, 2, ..., N} is the set of nodes and E ⊆
V × V is the set of edges. There exists a path from node
i to j if and only if there exist k different nodes {is} with
1 ≤ s ≤ k, i1 = i, ik = j satisfying (ip, ip+1) ∈ E for
any 1 ≤ p ≤ s − 1. Denote 〈 i, j 〉 ∈ G if there exists a
path from node i to j.

In graph G, if there exists a node i0 which has paths to
any other nodes, then the graph G contains a spanning tree
with the root i0. For the above graph G, if there exist paths
from any node i ∈ V to any node j (, i) ∈ V , then the
graph is called strongly connected.

For graph G = (V, E) and S ⊆ V . Define

N(S , G) = { j ∈ V : ∃ i ∈ S , (i, j) ∈ E}

be the set of neighbors of S .
For different graphs Gk = (V, Ek) (1 ≤ k ≤ K) with

the same set of vertices V , the union of these K graphs is

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 233 -



defined as
K⋃

k=1

Gk = (V,
K⋃

k=1

Ek) .

A matrix is called nonnegative if each of its entry is non-
negative. A nonnegative matrix is called stochastic if the
sum of each row equals to 1. A matrix is 0-1 if each entry
is 0 or 1. For two matrices A = (ai j)n×n and B = (bi j)n×n,
define A ◦ B = (max{ai j, bi j})n×n. At the same time, define∏K

i=1 Ai = AK AK−1 · · · A1 be the left products of matrices.
For each non-negative matrix A = {ai j}Ni, j=1, a graph

G(A) = (V, E) with E ⊆ V × V is given to character-
ize the structure of A, where V = {1, 2, ..., N} and ai j > 0
iff ( j, i) ∈ E.

Hereafter, two fundamental concepts are given as fol-
lows.

Definition 1 [4] A sequence of graphs {Gk}Kk=1 with ver-
tices set V is called sequential connectivity if there exist
sets S k ⊆ V such that

S k+1 ⊆ N(S k, Gk)

hold for any 1 ≤ k ≤ K, S 1 is a singleton, and S K+1 = V.
An infinite sequence of graphs {Gk}∞k=1 with vertices set V
is called sequential connectivity if there exists an increas-
ing integer sequence {tk}∞k=1 such that {Gi}tk+1−1

i=tk
is sequential

connectivity for any k ≥ 1.

Definition 2 [10] A sequence of graphs {Gk}Kk=1 with ver-

tices set V is called jointly connectivity if
K⋃

k=1
Gk contains a

spanning tree. An infinite sequence of graphs {Gk}∞k=1 with
vertices set V is called jointly connectivity if there exists
an increasing integer sequence {tk}∞k=1 such that {Gi}tk+1−1

i=tk
is

jointly connectivity for any k ≥ 1.

According to the above definitions of these two kinds of
connectivity, one knows that if {Gk}Kk=1 is sequential con-
nectivity, then it is also jointly connectivity, but not vice
versa. It can be seen from the following examples.

Let

A1 =


0 0 1
1 1 0
0 0 0

 , A2 =


0 1 1
1 0 0
0 1 0

 ,

A3 =


1 0 0
0 1 1
1 0 0



It is easy to verify that

S 1 = {1}, N(S 1, G(A1)) = {2}
S 2 = {2}, N(S 2, G(A2)) = {1, 3}
S 3 = {1, 3}, N(S 3, G(A3)) = {1, 2, 3}
S 4 = {1, 2, 3}

Thus {G(Ai)}3i=1 is sequential connectivity.

Similarly, denote

A1 =


0 0 0
0 1 0
0 1 0

 , A2 =


1 0 0
1 0 0
0 0 0



A3 =


0 0 0
0 0 0
0 0 1



It is easy to verify that

A1 ◦ A2 ◦ A3 =


1 0 0
1 1 0
0 1 1



Hence, {G(Ai)}3i=1 is jointly connectivity. Moreover,
{G(Ai)}3i=1 is not sequential connectivity.

3. Formulation of the Problem

Consider an MAS consisting of N autonomous agents,
let V = {1, 2, ..., N} be the set of these N agents. Let xi(t)
be the state of agent i at time t. The updating rule of the
above states is described by

xi(t + 1) =

N∑

j=1

ai j(t)x j(t) , (1)

where t ≥ 0, ai j(t) ≥ 0, and
N∑

j=1
ai j(t) = 1. Denote

A(t) = (ai j(t))N
i, j = 1 .

An interesting question is: What conditions can guar-
antee the consensus of all states in (1)? That is, |xi(t) −
x j(t)| → 0 as t → ∞ for any i, j ∈ V .

For the MAS (1), some necessary assumptions are given
as follows:

(A1) For some integer T > 0, there exists a sequence of
nonnegative integers {tk} with t1 = 0 satisfying 0 <
tk+1 − tk ≤ T for any k ≥ 1.

(A2) The graph Gk =
tk+1−1⋃

t=tk
G(t) contains a spanning tree

Tk.

(A3) There exists some α ∈ (0, 1
2 ] such that A(t) ≥ αD(t)

and G(
∏tk+1−1

t=tk D(t)) = Tk with Tk defined in (A2).
Hereafter, D(t) is a 0-1 matrix with positive diagonal
entries.

(A3-1) There exists some α ∈ (0, 1
2 ] such that

infai j(t)> 0 ai j(t) ≥ α and infi∈V,t≥0 aii(t) ≥ α.

Also, for the MAS (1), denote

m(t) = min
i∈V

xi(t),

M(t) = max
i∈V

xi(t),

∆(t) = M(t) − m(t),
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Remark 1 Assumption (A3-1) has been widely used in
Refs. [4], [5], [7], [9], and [12]. It should be pointed
out that this assumption requires that all nonzero entries
have a uniformly nonzero lower bound. However, accord-
ing to (A3), the above uniformly lower bound condition is
not necessary for the consensus of MAS (1) under the con-
dition that the weights of those edges corresponding to the
spanning tree Tk have a nonzero lower bound.

4. Convergence Analysis Based on Sequential Connec-
tivity

In this section, one discovers that the jointly connectiv-
ity is equivalent to sequential connectivity if the commu-
nication topology has self-loops at each node. Moreover,
the consensus of MAS (1) will be proved under the con-
dition of jointly connectivity by constructing a connective
sequence.

Lemma 1 Given a sequence of N × N non-negative ma-
trices {Ai}Ki=1 with positive diagonal entries and K ≥ KN ,
where KN is given by

KN = N · KN−1 + 1, K2 = 1.

If each G(Ai) contains a spanning tree, then {G(Ai)}Ki=1 is
sequential connectivity.

Proof: Suppose that graph G contains a spanning tree.
Delete all redundant edges in G and make the left graph G′
be a spanning tree. Thus there exists some node i inG′ with
out-degree 0 and in-degree 1. Based on the above process,
G is called i−deletable.

Since each Ai is positive-diagonal, it is easy to verify that
for any S ⊆ {1, 2, ..., N}, one gets

S ⊆ N(S , G(Ai))

for any 1 ≤ i ≤ K.
Use induction, it is obvious that the result of this lemma

holds for the case of N = 2 and K ≥ 1.
Assume that the case of N holds. For the case of N + 1,

given (N + 1)KN + 1 matrices {Ai} with dimension N + 1.
According to the pigeonhole principle, there exists some
node î ∈ {1, 2, ..., N + 1} and a subsequence {Aik } ⊆ {Ai}
with elements not less than KN + 1 such that any graph in
{G(Aik )} is î−deletable.

Without loss of generality, denote î = N + 1. From the
assumption of case N, there exists S k ⊆ {1, 2, ..., N} with
1 ≤ k ≤ KN satisfying

S k+1 ⊆ N(S k, G(Aik )) ,

where S 1 is a singleton and S KN + 1 = {1, 2, ..., N}.
Since G(AKN +1) contains a spanning tree and is also (N +

1)−deletable, then one has

S KN +2 = N({1, 2, ...,N},G(AKN +1)) = {1, ...,N,N + 1} .
Therefore, the case of N + 1 holds. Consequently, the

above result holds for any N ≥ 2. �

Lemma 2 Given a sequence of N × N 0-1 matrices {Di}Ki=1,
where Di has positive diagonal entries. If {G(Di)}Ki=1 is
jointly connectivity, then

G(DK DK−1 · · · D1)

contains a spanning tree.

Proof: According to the assumptions, one has

DK DK−1 · · · D1 ≥ DK ◦ · · · ◦ D2 ◦ D1.

The left proof is obvious and hence omitted here. �
From Lemmas 1 and 2, the sequential connectivity and

jointly connectivity are equivalent if each graph in the se-
quence has self-loops. Therefore, the following theorem
bridges the gap between the above two kinds of connectiv-
ity.

Theorem 1 Given an infinite sequence of graphs {Gk}∞k=1
with the same set of vertices V. If each node in Gk has a
self-loop, then the jointly connectivity is equivalent to the
sequential connectivity.

Proof: The proof is omitted here since it can be derived
easily from Lemmas 1 and 2.

Lemma 3 Given a sequence of N × N stochastic matrices
{At}Kt=1, where At ≥ α Pt and Pt is a 0-1 matrix. Let x(t +

1) = At x(t). If {G(Pt)}Kt=1 is sequential connectivity, then
one obtains

∆(K + 1) ≤ (1 − αK) ∆(1) .

Proof: For the sequence of matrices {Pt}Kt=1, according to
the definition of sequential connectivity, there exists S k ⊆
V such that

S k+1 ⊆ N(S k, G(Pk)),

where S 1 is a singleton and S K+1 = {1, 2, ..., N}.
Denote

M∗t = max
i ∈ S t

xi(t), m∗t = min
i ∈ S t

xi(t).

For t ≥ 1, if i ∈ S t+1, then one has

xi(t + 1) =

N∑

j=1

ai j(t)x j(t)

=
∑

j∈S t

ai j(t)x j(t) +
∑

j<S t

ai j(t)x j(t)

≤
∑

j∈S t

ai j(t)x j(t) + M(t)
∑

j<S t

ai j(t)

=
∑

j ∈ S t

ai j(t)x j(t) + M(t)(1 −
∑

j∈S t

ai j(t))

≤ M∗t
∑

j ∈ S t

ai j(t) + M(t)(1 −
∑

j ∈ S t

ai j(t)).
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Since
∑

j ∈ S t
ai j(t) ≥ α and M(t) ≤ M(1) for t ≥ 1,

then one has

M∗t + 1 ≤ αM∗t + (1 − α)M(1).

By using iteration, one gets

M∗K + 1 ≤ αK M∗1 + (1 − αK)M(1).

Similarly, one deduces

m∗K + 1 ≥ αKm∗1 + (1 − αK)m(1).

According to S K + 1 = {1, 2, ..., N} and m∗1 = M∗1, one
obtains

∆(K + 1) ≤ (1 − αK) ∆(1) .

�

Theorem 2 Suppose that assumptions (A1), (A2), (A3)
hold for the MAS (1), then (1) can reach consensus.

Proof: Denote

H1(k) = A(tk+1 − 1) · · · A(tk).

From (A3), one has H1(k) ≥ αT D(tk+1 − 1) · · · D(tk).
Moreover, by Lemma 2, G(H1(k)) contains a spanning tree,
where each node has a self-loop.

According to Lemma 1, {G(H1(i))}kKN
i=(k−1)KN +1 is sequen-

tial connectivity. By Lemma 3, one gets

∆(tkKN + 1) ≤ (1 − αT KN ) ∆(t(k−1)KN + 1).

Consequently, one obtains

∆(tkKN + 1) ≤ (1 − αT KN )k∆(t1).

Therefore, lim
k→∞

∆(tkKN + 1) = 0 and lim
t→∞

∆(t) = 0. That

is, the MAS (1) can reach consensus. �

5. Concluding remarks

This paper has further investigated the inner relationship
between the sequential connectivity and jointly connectiv-
ity. That is, the jointly connectivity is equivalent to se-
quential connectivity if the communication topology has
self-loops at each node. Based on the above result, the
consensus of discrete-time multi-agent systems is proved
under the condition of jointly connectivity by constructing
a connective sequence. The above proof greatly simplified
the former proofs. Some real-world applications will be
further explored in the near future.
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