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Abstract—We investigated a network of coupled neu-
ral oscillators in which connections between oscillators dy-
namically change through synaptic plasticity. We demon-
strate that the co-evolving dynamics of the connections
and neural oscillators yield the emergence of some specific
structured connections and neural activities. We also classi-
fied these self-organized states of coupled neural networks
with respect to their electrophysiological neuronal proper-
ties.

1. Introduction

Synaptic plasticity plays a vital role in learning in the
brain. It induces changes in the structure of synaptic con-
nections associated with the activity of neurons, leading
to the organization of neural functional assemblies related
to our memory [1]. Thus, synaptic plasticity has been in-
tensively investigated to reveal the underlying mechanism
of the learning process. Recent neurophysiological exper-
iments [2] revealed that changes in synaptic connections
depend on the relative spike timing between neurons in
what is called spike-timing-dependent plasticity (STDP).
This implies that the temporal spike pattern of neurons de-
termines synaptic growth.

This experimental finding raises a question: how does
STDP organize a neural network into functional neuronal
assemblies? This is still an open question in theoreti-
cal neuroscience, especially in cases where a network has
rich recurrent connections, although a number of numer-
ical studies have reported that STDP-organized recurrent
networks exhibit a variety of interesting behaviors [3, 4, 5].

The difficulty in analyzing the dynamics of STDP-
organized recurrent networks originates from the interplay
between neurons and their synapses (see Figure 1). In the
presence of plasticity, the spike pattern causes the structure
of synaptic connections to change, and in turn, the changes
experienced by the connections cause a new spike pattern
to appear. In other words, synaptic connections and neu-
ronal activities co-evolve simultaneously, which makes the
problem difficult to solve. This indicates a novel type of
problem in nonlinear science. Conventional nonlinear sys-
tems are defined on static substrates: a number of units
comprises the system and are coupled by some fixed inter-
actions, which is usually denoted by a lattice, an all-to-all
connection and some complex networks. In contrast, in this
co-evolving dynamical system, the interactions also change

Neuronal activity changes the network.

Reorganized network affects the activity.

Figure 1: Schematic of an STDP-organized recurrent net-
work. Owing to neural plasticity, the spike pattern causes
the structure of synaptic connections to change, and in turn,
changes experienced by the connections causes a new spike
pattern to appear.

in time together with the states of the units, which will lead
to a new organization of the interactions and states of the
units.

To address this problem, we will introduce a simple
model of co-evolving dynamics, which consists of a pop-
ulation of neuronal oscillators, and analyze the asymptotic
behavior of this dynamical system. We numerically and an-
alytically demonstrate that the co-evolving dynamics of the
connections and neural oscillators yields the emergence of
some specific structured connections and neural activities.
We have also classified these self-organized states of cou-
pled neural networks based on their electrophysiological
neuronal properties, such as regular spiking, fast-spiking,
and low-threshold spiking neurons.

2. Model: Co-evolving network of coupled neural os-
cillators

First, let us consider a reduction of the dynamics of
a single oscillatory neuron, which is usually described
in a multi-dimensional dynamical system, to the one-
dimensional phase oscillator model [6]. Limit-cycle os-
cillation is the minimal motion that represents the relative
timing of the spikes of neurons, which determines STDP.
Thus, let us assume that the activity of the neuron is oscil-
latory and not random. In other words, we consider a limit-
cycle oscillator as a neuron model, which is perturbed by
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Figure 2: Example of the function Γ(φ) for a Hodgkin-
Huxley-type neuron model coupled with α chemical
synapse. The function obtained by the adjoint method can
be well fitted by the first three Fourier modes.

synaptic inputs and noises. This assumption has enabled us
to reduce the description of the neuron to this simple form:

dφi

dt
= ωi +

Ki j

N
Γ(φi − φ j). (1)

The phase φi represents the state of the i-th neuron, and
ωi is its natural frequency. The later term represents the
interactions caused by other neurons, and Ki j is the cou-
pling weight from a neuron j to a neuron i. The function
Γ(φ) is systematically determined from the original multi-
dimensional dynamical system or by experimental meth-
ods [7, 8]. For example, in the case of the Hodgkin-Huxley
neuron model coupled with α chemical synapse, the func-
tion Γ(φ) is calculated as in Fig. 2. Γ(φ) is 2π-periodic,
and the first Fourier mode is usually dominant. In fact, the
figure shows that Γ(φ) is well approximated up to the third
Fourier mode. Thus, we assume that this function takes this
simple form, Γ(φ) = − sin(φ+α), only considering the first
Fourier mode. The results based on this first Fourier mode
approximation robustly hold against perturbations by addi-
tional small higher Fourier modes [9], as discussed further
in Sec. 4.

Next, we introduce the dynamics of the coupling weights
Ki j by the following equation:

dKi j

dt
= ε
[
Λ(φi − φ j)

]
, |Ki j| ≤ 1. (2)

The dynamics of the coupling weights depend on the rela-
tive timing between the neurons similar to STDP. Because
the function Λ(φ) determines the evolution of the weights,
we call it the learning function. ε is a parameter of the
learning rate. We assume it is very small, i.e., ε � 1,
because the dynamics of synaptic weight is much slower
than that of neurons. The additional condition, |Ki j| ≤ 1,
means that the synaptic weight is bounded. This condition
is reasonable, because the strength of synaptic connection
cannot increase indefinitely. Because the learning function
Λ(φ) is periodic, we assumeΛ(φi−φ j) = −ε sin(φi−φ j+β),
considering only the first Fourier mode. The parameter β
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Figure 3: Learning function Λ(φ) is parameterized by β,
which determines how the coupling weight Ki j evolves de-
pending on the relative timing between the neurons i and
j.

is the shift of the sine function and is important for learn-
ing because it characterizes the properties of the weight
dynamics. In Fig. 3, the graphs show the learning func-
tion Λ(φ), varying the parameter β. When β ∼ −π/2 for
a pair of synchronized neurons, the weights between them
increase by the learning function. On the other hand, for a
desynchronized pair, the weights decrease. Thus, we call it
a Hebbian-like rule. If β ∼ 0, the dependency on the rela-
tive timing becomes similar to the time window function of
STDP, which is experimentally observed in the cortex [2].
If an oscillator precedes other, then, the connection from
the preceding oscillator is potentiated and the opposite is
depressed. We call this a causal rule. When β ∼ π/2, the
learning function has a form opposite to the Hebbian-like
rule, thus, it is called an anti-Hebbian-like rule.

Taken together with the above equations, we eventually
have the following equations of the model:

dφi

dt
= 1 − 1

N

∑
j

Ki j sin(φi − φ j + α),

dKi j

dt
= −ε sin(φi − φ j + β), |Ki j| ≤ 1, (3)

where we assume that the natural frequencies of neurons
are almost the same. Then, this model is characterized by
only two parameters: α and β. Consequently, we can sys-
tematically examine the behavior of this model in a range
of the parameter space.

3. Classification of neural network organization

We numerically and analytically found that the dynami-
cal system described by equation (3) exhibits three types of
asymptotic states: two-cluster, coherent, and chaotic [10].
The top three graphs in Fig. 4 are raster plots showing typi-
cal spike patterns of these states. The bottom graph depicts
the phase diagram in the parameter space (α, β), which is
determined by the linear stability analysis of these states.
We will overlook the properties of these asymptotic states
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Figure 4: Phase diagram of the dynamical system defined
by equation (3). This system exhibits three types of asymp-
totic states: two-cluster, coherent, and chaotic. Top three
graphs show typical spike patterns of these states.

and give intuitive explanations of the mechanism of these
network formations. For details, refer to [10].

The two-cluster state in which the neurons are divided
into two synchronized clusters occurs when the learning
function Λ(φ) behaves as the Hebbian-like rule. In this pa-
rameter region, if a pair of neurons is in-phase, then the
weights between the neurons are increased. This will fur-
ther enhance the synchronization between them. In con-
trast, if a pair of neurons is in anti-phase, then the weights
will be decreased. In other words, in this situation, synaptic
plasticity acts as a positive feedback on the synchronization
of oscillators. According to this positive feedback, each
pair of neurons is gradually entrained to in-phase or anti-
phase synchronization, and eventually, all neurons are or-
ganized into the two-cell assemblies of synchronized neu-
rons.

The coherent state where the neurons are arranged in a
sequence as shown in Fig. 4 is observed in a parameter re-
gion where the learning functionΛ(φ) behaves as the causal
rule. In this case, plasticity is sensitive to the temporal or-
der of spikes, and the learning function changes its weights
to preserve the temporal order of oscillators. Consequently,
this plasticity generates an asymmetric, feed-forward net-
work based on the temporal order of spikes. Owing to
this feed-forward connection, the relative phase relation-
ship among neurons is stably maintained over time.

In the remaining parameter region where both the two-
cluster and coherent states are unstable, we observe a
chaotic behavior of the neural network characterized by
positive Lyapunov exponents. In this state, the dynami-
cal system does not settle in an ordered state. The relative
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Figure 5: Chaotic behavior of the neural network character-
ized by positive Lyapunov exponents. (a) A typical trajec-
tory of the system where a pair of neurons is reciprocally
connected. (b) Lyapunov exponents as a function of ε.
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Figure 6: Obtained Γ(φ) of regular-spiking (RS), fast-
spiking (FS), and low-threshold spiking (LTS) neurons un-
der different conditions of synaptic transmission delay τ.

spike timings of neurons and the coupling weights continue
to change with time. Figure 5(a) shows a typical trajectory
of the system where a pair of neurons is reciprocally con-
nected. This system has three dynamical variables: a rela-
tive phase and two synaptic weights, and its attractor has a
positive Lyapunov exponent, as shown in Fig. 5(b).

4. Network organization related to electrophysiological
neuronal properties

In this section, we examine the validity of the results ob-
tained in the previous section in the case that the neuronal
oscillator is defined by neurons with realistic electrophys-
iological types. In Sec. 2, we assumed that the function
Γ(φ) can be approximated only by the first Fourier mode,
because it is usually dominant in the case of neuronal oscil-
lators. However, the function Γ(φ), which is determined by
the electrophysiological property of the neuron, includes
small higher Fourier modes, and sometimes their effects
are not negligible. Thus, using the adjoint method [11], we
numerically determined the function Γ(φ) for three electro-
physiological types under the different conditions of synap-
tic transmission delay τ: regular-spiking (RS) [12], fast-
spiking (FS) [13], and low-threshold spiking (LTS) [14]
neurons. We summarized the obtained Γ(φ) in Fig. 6. Us-
ing the obtained Γ(φ), we numerically study the asymptotic
state of the dynamical system given by equations (1) and
(2) and examine the effect of the electrophysiological prop-
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Figure 7: Spike-raster graphs of four-cluster and six-cluster
states for Λ(φ) of FS neuron. β = -0.8 π and τ = 0.5 ms
(four cluster). β = -0.1 π and τ = 1 ms (six cluster).

erties of neurons on the network organization.
Roughly speaking, we found that three types of network

organizations (two-cluster, coherent, and chaotic states) are
robustly observed for Γ(φ) of RS, FS, and LTS neurons.
However, under some parameter regions, other types of
network organizations are also observed (Fig. 7). In the
figure, the raster plots show four or six clusters of neu-
ronal spikes in which neurons are organized into multi-
synchronized groups. These multi-cluster states are ob-
served in the bistable region between the two-cluster and
coherent states, and we found that the multi-cluster state is
realized by a combination of these states [9].

5. Summary

In this paper, we have studied the self-organization of re-
current networks under STDP. STDP-organized networks
are difficult to analyze because of the co-evolving dynam-
ics of neurons and synapses. To address this problem, we
introduced a simple model of the co-evolving dynamics of
synaptic weights and neuronal oscillators. We found that
depending on the form of the learning function, this model
exhibits three distinct types of network organizations: two-
cluster, coherent and chaotic states. Furthermore, we ex-
amined these network organizations with respect to to their
associated electrophysiological neuronal properties, such
as regular-spiking, fast-spiking and a low-threshold spik-
ing neurons.
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