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Abstract—The quadratic assignment problem is one of
the NP-hard combinatorial optimization problems. In this
paper, we analyzed solvable performance of an adaptive lo-
cal search algorithm for solving quadratic assignment prob-
lems which has similar searching characteristic to the Lin-
Kernighan algorithm for solving traveling salesman prob-
lems. We also analyzed the proposed adaptive local search
algorithm with tabu search dynamics. Using results ob-
tained from the analysis, we proposed a new adaptive local
search algorithm with less variable depth. Evaluating the
performances of the proposed algorithms, we found that the
new adaptive local search algorithm has high performance
with less calculation costs by modified for tabu search.

1. Introduction

In our life, we are often asked to solve combinatorial
optimization problems such as drilling problems, VLSI de-
sign, scheduling, and delivery plan problems. When we
solve these combinatorial optimization problems, one of
the most important issues is to reduce costs. If we can ob-
tain the best solutions, we can minimize the costs. How-
ever, we cannot usually get a best solution because these
combinatorial optimization problems belong to a class of
NP-hard. Thus, it is necessary to develop effective heuristic
algorithms, even though obtained solutions are not guaran-
teed to be best.

The quadratic assignment problem (QAP)[1] is one of
the NP-hard problems. The goal of QAP is how to find a
best assignment. It formulates various real life problems.
For example, in case of facility assignments, the goal is
how to assign facilities to each city with a minimum to-
tal cost when the flow between the facilities and distance
between the cities are given.

On the other hand, several heuristic algorithms for solv-
ing traveling salesman problem (TSP), which is a special
case of QAP, have already been proposed, such as the 2-
opt, the Or-opt and the Lin-Kernighan (LK) algorithms[2].
Among them, the LK algorithm is one of the most powerful
algorithms for finding superior solutions of TSP. The LK
algorithm controls the number of exchanged links λ in the
λ-opt algorithm. It realizes an effective search by changing
λ adaptively during its searching processes.

We have already proposed an algorithm for solving
QAPs that has a similar searching strategy as the LK al-
gorithm: namely the number of exchanged elements are
adaptively decided[3]. The proposed adaptive local search
algorithm has higher performance. We also introduced tabu
search strategy[6, 7] to escape from undesirable local min-
ima, because the proposed adaptive local search algorithm
for QAPs has a steepest descent down hill dynamics, which

has a drawback of being trapped at undesirable local min-
ima.

In this paper, we modified the adaptive local search al-
gorithm with tabu search[3] to obtain much higher per-
formance. We conducted numerical experiments to show
that the performance of the modified adaptive local search
algorithm is superior using the benchmark problems of
QAPLIB[1].

2. QAP

The QAP[1] is a typical example of an NP-hard combi-
natorial optimization problem. It includes various real life
combinatorial optimization problems. For example, TSP is
a special case of QAP.

In QAP, when two n × n matrices, a distance matrix
A = (ai j) and a flow matrix B = (bi j), are given, we are
asked to obtain an assignment p = {p(1), p(2), . . . , p(n)}
that minimizes an objective function where, distance ai j
means the distance between cities i and j, the flow bkl
means the flow from the facility k to the facility l. The
objective function of QAP is defined as follows

F(p) =
n∑

i=1

n∑
j=1

ai jbp(i)p( j). (1)

Although it is easy to define QAPs, it is almost impossi-
ble to get an optimal solution of QAPs. The reason is that
the number of possible assignments becomes n! for an n-
size QAP, then the number of feasible solutions increases
exponentially if we use an exhaustive search. Then, it is
important to develop a good heuristic algorithm in a rea-
sonable time frame, even though obtained solutions are not
guaranteed to be optimal.

3. λ-exchange algorithm

The λ-exchange algorithm is one of the most typical
heuristic algorithms for searching better solutions of QAP.
It is described as follows.

Step1 Facilities are assigned to cities randomly. Let us
describe the solution as p.

Step2 λ facilities are chosen from p, and their assignments
are exchanged each other. Let us describe a solution
of the neighborhood of p as p′. If p′ satisfies F(p′) <
F(p), p is updated to p′.

Step3 Step2 is repeated until the update of p stops.
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Generally, the λ-exchange algorithm with large λ can
find superior solutions because the size of neighborhood
increases, when λ becomes large. However, if λ becomes
large, calculation costs also increase exponentially. It
means that it is almost impossible to finish a search in real-
istic time.

4. An adaptive λ-exchange algorithm with tabu search

To overcome a computational complexity of the λ-
exchange algorithm, we have already proposed an adaptive
λ-exchange algorithm[3]. In the proposed algorithm[3], so-
lutions are searched by exchanging elements with changing
λ adaptively. It is implemented by deciding the number of
exchanged elements adaptively, which is a similar strategy
to the LK algorithm[2] applied to TSP.

4.1 Local search algorithm[3]

First, let us explain the adaptive local search
algorithm[4, 5] in the following.

Step1 Facilities are assigned to cities randomly. Let us de-
scribe the present solution as p, and the best solution
in the past search as pbest.

Step2 A new iteration starts. The cities s1 and s2 are cho-
sen from the cities ci(i = 1, 2, ..., n) which reduce the
cost most when the assigned facilities are exchanged
each other. The city s1 is a start point of the exchange.
Then, a new solution p′ by exchanging the facilities
assigned to s1 and s2 is obtained. If F(pbest) > F(p′),
pbest is updated to p′. Let d = 2. Here, d is the
number of cities which are already exchanged in this
iteration.

Step3 If d = L, go to Step5. Here, L is a predefined pa-
rameter for the search depth. Then, the city sd+1 is
chosen from the cities ci(i = 1, 2, ..., n) that has not
been exchanged yet ({ci} \ {sk}(k = 1, 2, ..., d)), which
reduces the cost most when the assigned facility is ex-
changed with s1. Then, the solution p′ is updated by
exchanging the facilities which assigned s1 and sd+1.
Then, d is increased by 1.

Step4 If F(pbest) > F(p′), pbest is updated to p′. Other-
wise, pbest is not updated. Return to Step3.

Step5 The present solution p is updated to pbest. If p is
not improved at this iteration, the search is terminated,
otherwise, return to Step2.

In Step3 of the proposed local search algorithm, we set
the parameter L = n. It means that we search solutions
from depth 2 to depth n adaptively in all iteration.

4.2 Introduction of tabu search[6, 7]

The main ideas of the tabu search is described as follows
among all the neighboring solutions, the tabu search moves
the proposed solution to a best solution. If there are no im-
proving moves, the tabu search chooses a move that least
degrades the objective function. To avoid returning to the
local optimum just visited, the reverse move is now forbid-
den. This is realized by storing this move in a data structure
often called a tabu list.

We explain the adaptive local search algorithm with the
tabu search[3] as follows.

Step1 Facilities are assigned to cities randomly. Let us de-
scribe the present solution as p, and the best solution
in the past search as pbest. Then, the tabu list is ini-
tialized. A size of the tabu list is set T . The tabu list
is utilized to restrict only the choice of the cities in
Step2.

Step2 A new iteration starts. Let us describe the new best
solution in this iteration as pite. The cities s1 and s2
are chosen from the cities ci(i = 1, 2, ..., n) that are
not stored in the tabu list which reduce the cost most
when the assigned facilities are exchanged each other.
Then, the cities s1 and s2 are stored in the tabu list.
The city s1 is a start point of the exchange. Then, a
new solution p′ by exchanging the facilities which are
assigned to s1 and s2 is obtained. Then, pite is updated
to p′. Let d = 2. Here, d is the number of cities which
are already exchanged for the assignment of facilities
in this iteration.

Step3 If d = L, go to Step5. Here, L is the parameter
for the limit of depth of solution search. Then, the
city sd+1 is chosen from the cities ci(i = 1, 2, ..., n)
except cities that has already been exchanged sk(k =
1, 2, ..., d) which reduces the cost most when the as-
signed facility is exchanged with s1. Then, the solu-
tion p′ is updated by exchanging the facilities which
are assigned to s1 and sd+1. Then, d is increased by 1.

Step4 If F(pite) > F(p′), pite is updated to p′. Otherwise,
pite is not updated. Return to Step3.

Step5 If F(pbest) > F(pite), pbest is updated to pite.
Next, p is updated to pite. Return to Step2.

4.3 Modification of tabu search

In Step3 of section 4.2, we set the parameter L = n.
However, if we introduce the tabu search, the value of L =
2, often appropriate.

Then, we do not fix the value of L. Namely, we varied
the value of L during the search. We used the following
definition:

L = 1 +
⌊M

T

⌋
, (2)

where M is the maximum number of calculating the ob-
jective functions during the search and T is the number of
calculating objective functions from the initial state to the
present state. In this paper, we set M = 1 × 106 and T in-
creases form 0 to M during the search. If L is lager than
n, we set L = n. Then, in the first phase of the searching
process, the value of L becomes n. At the final phase of the
searching process, the parameter L converges to 2 because

the value of
M
T

converges to 1.

5. Numerical results

5.1 Results of adaptive local search

We evaluated the performance of the adaptive lo-
cal search algorithm using benchmark problems from
QAPLIB[1]. For each instance, different 100 initial solu-
tions were prepared. We evaluated the performance of two
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local search algorithms: the 2-exchange and the adaptive
local search algorithm. To evaluate the performance, we
used the gap defined by the following equation:

gap[%] =
found best solution − optimal solution

optimal solution
× 100.

(3)
Table 1 shows the average gaps and the number of calcu-

lating the objective functions until the search is stopped at
local minima. For all instances, the proposed local search
algorithm can find better solutions than the 2-exchange al-
gorithm. Moreover, the numbers of calculating the objec-
tive function of the adaptive local search algorithm are al-
most the same as the 2-exchange algorithm. The results
indicate that the adaptive local search[3] algorithms could
find better solutions efficiently.

Table 1: Results of average gaps [%] and the number of
calculating the objective functions during the search (N).

2-exchange adaptive local search
instance gap[%] N gap[%] N
Lipa40a 1.51 18,002 1.45 16,290
Lipa60a 1.11 62,711 1.04 45,531
Lipa80a 0.85 150,321 0.79 98,545
Lipa40b 18.5 18,954 18.0 17,096
Lipa60b 20.1 63,932 19.7 46,262
Lipa80b 21.7 156,357 21.3 102,415
Sko49 3.09 53,543 2.48 52,070
Sko56 2.84 84,685 2.20 81,312
Sko64 2.69 129,951 2.05 120,102
Sko81 2.30 297,594 1.70 247,296
Sko90 2.15 426,973 1.63 351,138
Tai40a 5.05 18,392 4.51 16,655
Tai60a 4.72 63,649 4.21 47,759
Tai80a 3.67 160,781 3.27 100,605
Tai100a 3.46 312,196 3.01 178,868
Tai40b 10.4 33,524 9.10 33,781
Tai60b 8.66 127,776 6.00 121,278
Tai80b 6.01 318,749 4.53 283,466
Tai100b 5.28 676,071 4.01 578,063

5.2 Results of adaptive local search with tabu search

We evaluated the performance of three algorithms with
tabu search: (i) the 2-exchange algorithm with the tabu
search, (ii) the adaptive local search algorithm [4, 5] with
the tabu search and constant L (= n) and (iii) the adaptive
local search algorithm with the tabu search and variable L.
The 2-exchange algorithm with the tabu search corresponds
to the adaptive local search with constant L = 2.

Figure 1 shows temporal change of gaps during the
search. We firstly obtain the solutions by the proposed
adaptive local search algorithm without the tabu search un-
til improvement stops. Next, the solution is improved by
the adaptive local search algorithm with the tabu search un-
til the searches are executed for 1× 106. For each instance,

different 30 initial conditions were prepared. Figure 1 is
the result of the average of 30 trials.

In Tai** instances (Fig.1 (f),(g),(h),(i)), the adaptive lo-
cal search algorithm with constant L found superior solu-
tions to the 2-exchange algorithm. On the other hand, in
Lipa** instances (Fig.1 (a),(b)) and Sko** instances (Fig.1
(c),(d)), the 2-exchange algorithm found superior solutions
to the adaptive local search algorithm with constant L.

In Tai** instances (Fig.1 (f),(g),(h),(i)), the adaptive lo-
cal search algorithm with variable L shows almost the same
as the performance algorithm with constant L. In addition,
in Lipa** instances (Fig.1 (a),(b)) and Sko** instances
(Fig.1 (c),(d)), the algorithm with variable L has the same
performance as the 2-exchange algorithm. These results
indicate that the algorithm with variable L can find better
solutions effectively for all instances.

6. Conclusion

We proposed an adaptive local search algorithm for solv-
ing QAPs. The proposed adaptive local search algorithm
decides the number of exchanged elements adaptively. In
addition, the algorithm could be improved by the tabu
search. In this paper, we modified the proposed adaptive
local search algorithm by introducing strategy of variable
depth. Then, the modified algorithm could search solutions
more effectively. Quantitative analysis by numerical exper-
iments show that the proposed algorithm has higher perfor-
mance for solving QAPs.
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Figure 1: Temporal change of gaps. Abscissae show the number of calculating the objective functions during the search.
Results by the 2-exchange algorithm with tabu search are shown by blue lines, those by the adaptive local search algorithm
with constant L are shown by black lines and those by the adaptive local search algorithm with variable L are shown by
red lines.
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