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Abstract—This paper presents sensor coverage control
to cover a whole mission space and to maximize a sensing
performance to detect targets. Suppose that each point in
the mission space is covered by the nearest sensor. Then,
a sensing area of each sensor is represented as a Voronoi
partition. We introduce an objective function which repre-
sents the sensing performance based on the Voronoi parti-
tion and formulate the sensor coverage problem as an opti-
mization problem. By introducing a barycentric coordinate
over the mission space, we show that the sensor coverage
problem can be transformed into a potential game. In po-
tential games, local maximizers of a potential function are
stable equilibrium points of the corresponding replicator
dynamics. We propose distributed sensor coverage control
based on the replicator dynamics to find the local maximiz-
ers of the objective function. Moreover, by simulation, we
investigate the relation between a value function and stable
equilibrium points of the replicator dynamics.

1. Introduction

Because of recent development of sensor network tech-
nologies and electronic devices, a group of autonomous
sensors with computing, communication, and mobility ca-
pabilities is expected to perform a variety of distributed
sensing tasks such as surveillance and environmental mon-
itoring [1]. In such a sensor network, each sensor com-
municates with its neighbor sensors locally and decides its
optimal placement based on the local information. So, the
coverage control requires a decentralized control method
for the optimal placement of a large number of sensors to
achieve a high sensing performance [2, 3]. We consider a
sensor coverage problem which places mobile sensors in
the mission space to maximize an objective function. To
solve such a maximization problem, Martı́nez et al. applied
motion coordination such as swarming behaviors in biolog-
ical groups [3].

On the other hand, the concept of potential games was
introduced by Monderer and Shapley [4]. In potential
games, all information about payoffs that is relevant to
agents’ incentives can be captured in a scalar-valued func-
tion which is called a potential function. Therefore, the
profitable strategy revisions increase a value of the poten-
tial function. Marden et al. proposed a control method
based on potential games to maximize an objective func-
tion [5]. Hayashi et al. extended it to a power-aware sensor

coverage problem [6].
In this paper, we consider a sensor coverage problem to

cover the whole mission space and to maximize the sens-
ing performance to detect targets in the mission space. We
assume that each point in the mission space is covered by
the nearest sensor. Then, a sensing area of each sensor is
represented as a Voronoi partition. The objective function
to maximize the sensing performance is considered as a po-
tential function in a potential game. Then, we show that the
sensor coverage problem can be represented as a potential
game by introducing a barycentric coordinate over the mis-
sion space. Sandholm showed that all local maximizers of
a potential function in potential games are stable equilib-
rium points of the corresponding replicator dynamics [7].
Based on the result, we use replicator dynamics to find a
suboptimal position of each sensor.

The remainder of this paper is organized as follows. In
section 2, we review the problem setting of the sensor cov-
erage problem. We introduce a barycentric coordinate over
the mission space and rewrite it as an optimization problem
based on the barycentric coordinate in section 3. Section
4 shows that the sensor coverage problem can be trans-
formed into a potential game where the barycentric coor-
dinate corresponds to a mixed strategy. We also propose
distributed optimal sensor coverage control based on repli-
cator dynamics. In section 5, we show some simulations.
Finally, we conclude this paper in section 6.

2. Sensor Coverage Problem

In this paper, we consider a sensor coverage problem
to cover a whole mission space and maximize sensing
performance. We model the mission space of n mobile
sensors as a convex polytope Q ⊂ R2 with m vertices
v1 = (v11 , v12 )T , v2 = (v21 , v22 )T , . . . , and vm = (vm1 , vm2 )T .
Shown in Fig. 1 is an example of the convex polytope Q
with 5 vertices. Let I = {1, . . . , n} be a set of n mo-
bile sensors. Suppose that a position of each sensor i is
represented as ri = (ri

1, r
i
2)T ∈ Q. A value function φ:

Q → [0,∞) is integrable and represents the relative im-
portance of each point in the mission space Q. We assume
that all sensors have the same performance. For sensor i
at the point ri ∈ Q, its ability to detect a target originat-
ing at a point q = (q1, q2)T ∈ Q degrades with a distance∥∥∥q − ri

∥∥∥. This ability is measured by a performance func-
tion h : [0,∞) → R which is assumed to be nonincreas-
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Figure 1: Example of a convex mission space Q where each
vi is a vertex (i = 1, . . . , 5).

ing and piecewise-differentiable. With the value function φ
and the performance function h, we introduce an objective
function H by

H(r) :=
∫

Q
max

i∈I
h(||q − ri||)φ(q)dq, (1)

where r = (r1, . . . , rn).
We assume that each point in the mission space is cov-

ered by the nearest sensor. Then, a sensing area of each sen-
sor is represented as a Voronoi partition. Given Q ⊂ R2 and
r = (r1, . . . , rn) of n distinct points, the Voronoi partition of
Q generated by r is the collection of sets {ν1(r), . . . , νn(r)}
defined by νi(r) := {q ∈ Q| ||q − ri|| ≤ ||q − r j|| for all i ,
j, j ∈ I} [3]. We refer to νi(r) as the Voronoi cell of ri.
Then, since the function h(||q − ri||) is monotonically non-
increasing, the objective function H is rewritten as follows:

H(r) =
n∑

i=1

∫
νi(r)

h(||q − ri||)φ(q)dq, (2)

where νi represents a sensing area of sensor i for all i ∈ I.

3. Optimization Problem with a Barycentric Coordi-
nate

All points in a convex polytope are represented by a
barycentric coordinate [8]. In this section, we propose
a representation of a position of sensor i based on the
barycentric coordinate. Let xi = (xi

1, . . . , x
i
m)T be the

barycentric coordinate of sensor i, where xi
k ≥ 0 and∑m

k=1 xi
k = 1 for all i ∈ I and k ∈ {1, . . . ,m}. All sensors

are placed in the mission space Q. The position ri is repre-
sented by the barycentric coordinate xi = (xi

1, . . . , x
i
m)T as

follows:

ri(xi) =
[
v11 . . . vm1

v12 . . . vm2

] 
xi

1
...

xi
m

 for all i ∈ I, (3)

where
m∑

k=1
xi

k = 1 for all i ∈ I,

xi
k ≥ 0 for all i ∈ I and k ∈ {1, . . . ,m}.

Thus, the objective function (2) is a function of the
barycentric coordinate as follows:

H(x) := H(r(x)) =
n∑

i=1

∫
νi(r(x))

h(||q − ri(xi)||)φ(q)dq, (4)

where x = (x1, . . . , xn) is the barycentric coordinate of n
sensors. Therefore, we can formulate the sensor coverage
problem as the following optimization problem :

maximize
x

H(x)

subject to
m∑

k=1
xi

k = 1 for all i ∈ I,

xi
k ≥ 0 for all i ∈ I and k ∈ {1, . . . ,m}.

For all sets ν ⊆ Q , let Mν and Cν be as follows:

Mν :=
∫
ν

φ(q)dq, (5)

Cν :=
1

Mν

∫
ν

qφ(q)dq. (6)

Cν is called a centroid of a set ν. If a combination of sen-
sor positions r satisfies Eq.(7), r is a local maximizer of
objective function (2).

ri = Cνi for all i ∈ I. (7)

4. Potential Game for Sensor Coverage Problem

In potential games, local maximizers of a potential func-
tion are stable equilibrium points of the corresponding
replicator dynamics. Therefore, we formulate the sensor
coverage problem as a potential game, and search local
maximizers of the objective function H.

We consider sensor i as population i in a potential game
and a pure strategy k ∈ S = {1, . . . ,m} is to locate a sensor
at a vertex vk of the mission space. Suppose that S is the
common set of pure strategies of all populations. Then, the
barycentric coordinate xi of sensor i can be considered as a
population state of population i. Note that

∑m
k=1 xi

k = 1 for
all i ∈ I. Moreover, we consider the objective function H
as the potential function in the potential game. Therefore,
introducing a payoff function F i

k(x) defined by

F i
k(x) =

∂H
∂xi

k

(x) for all i ∈ I and k ∈ S , (8)

we can transform the sensor coverage problem into an n
population potential game, which has m vertices of the mis-
sion space Q as the pure strategies, the barycentric coor-
dinate xi as the population state for population i, and the
objective function H(x) as the potential function.
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For simplicity, we assume that h(d) = −d2. Let

Jr,ν :=
∫
ν

‖q − r‖2φ(q)dq. (9)

Then, we have the following equation:

Jr,ν = JCν,ν + Mν‖r −Cν‖2, (10)

and the objective function (4) is rewritten as follows:

H(x) = −
n∑

i=1

JCνi ,νi −
n∑

i=1

Mνi
∥∥∥ri −Cνi

∥∥∥2. (11)

Thus, the payoff function F i
k(x) is given by

F i
k(x) =

∂H
∂xi

k

(x)

=
∂

∂xi
k

− n∑
j=1

Mν j

∥∥∥∥∥∥∥
m∑

l=1

x j
l vl −Cν j

∥∥∥∥∥∥∥
2

= −2Mνi

vk1

 m∑
l=1

xi
lvl1 −Cνi1

 + vk2

 m∑
l=1

xi
lvl2 −Cνi2


 .

(12)

We introduce replicator dynamics to search the local
maximizers of the potential function. Suppose that the in-
crease rate of agents with strategy k ∈ S is proportional to
the difference between the payoff F i

k and an average pay-
off of population i. Then, replicator dynamics is given as
follows [9]:

ẋi
k = xi

k

F i
k(x) −

m∑
l=1

xi
lF

i
l(x)

 . (13)

By substituting the payoff function (12) for Eq. (13), we
have

ẋi
k = −2Mνi x

i
k


vk1

 m∑
l=1

xi
lvl1−Cνi1

+vk2

 m∑
l=1

xi
lvl2−Cνi2




−
m∑

l=1

xi
l

vl1

 m∑
l=1

xi
lvl1 −Cνi1

 + vl2

 m∑
l=1

xi
lvl2 −Cνi2



 .

(14)

The stable equilibrium points of replicator dynamics (14)
are local maximizers of the potential function (11). Thus,
we can search the optimal position of each sensor to maxi-
mize the objective function using Eq. (13).

5. Simulation

We consider that 5 sensors cover a square mission space
Q = [0, 100] × [0, 100] with the following value function
φ(q):

φ(q) = exp(−((q1 − 80)2 + (q2 − 70)2)/A), (15)

where A is a parameter. Note that φ(q) is a one-hump func-
tion whose top is (80, 70). The smaller A is, the steeper its
top is. As A goes to the infinity, φ converges to φ(q) = 1.
Shown in Figs. 2(a) and 2(b) are stable equilibrium points
of the replicator dynamics when φ(q) = 1. For A = 12000,
these equilibrium points are moved as shown in Figs. 2(c)
and 2(d). For A = 10000, however, the two equilibrium
points coincide and we observe one Voronoi partition as
shown in Fig. 2(e). In other words, a pitchfork bifurcation
occurs. For any A less than 10000, we observe a unique
stable equilibrium point which is a globally optimal sen-
sor location. Shown in Fig. 2(f) is the stable equilibrium
point for A = 4000. Moreover, shown in Fig. 3 is a bi-
furcation diagram for the two equilibrium points where the
vertical and the horizontal axes are q1 and A, respectively.
As A is decreased, the two equilibrium points are closer
and finally coincide. Shown in Fig. 4 is the relation be-
tween the parameter A and values of the objective function
at the equilibrium points. As A is decreased, the value func-
tion is steeper and the sensors move to its top to make the
value of the objective function higher. Therefore, the value
of the objective function increases. From this simulation,
it is shown that, if the value function is enough steep, the
replicator dynamics has the unique stable equilibrium point
which corresponds to the optimal sensor location. Such a
bifurcation phenomenon is useful to obtain a globally opti-
mal sensor location for a specified parameter A∗. First, we
set A to be small enough to have the unique stable equi-
librium point and obtain it using the replicator dynamics.
Next, we increase A and set several initial points around
it. If their trajectories converge to different equilibrium
points, we select one which optimizes the objective func-
tion. Then, we repeat this procedure until A becomes the
specified value A∗, for which we obtain the optimal sensor
location. It is future work to evolve this idea.

6. Conclusion

We discussed an application of a potential game to a sen-
sor coverage problem using a barycentric coordinate. We
showed that the optimal position of each sensor to max-
imize the objective function can be obtained by replica-
tor dynamics. It is our future work to investigate global
bifurcation properties of sensor positions obtained by the
replicator dynamics. It is also our future work to discuss
improvements of our approach to search for the global op-
timal sensor location.
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(a) A = ∞. (c) A = 12000. (e) A = 10000.

(b) A = ∞. (d) A = 12000. (f) A = 4000.

Figure 2: Stable equilibrium points: For A = ∞ (resp. 12000), there are two equilibrium points (a) and (b) (resp. (c) and
(d)) and, for A = 10000 (resp. 4000), there is a unique one (e) (resp. (f)).
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