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Abstract—In this paper, for solving min-max multiple
traveling salesman problems (min-max mTSP), we pro-
pose two heuristic methods: a tabu search with CORSS-
exchange and a chaotic search which controls execution of
CROSS-exchange. In earlier studies, it has already been
shown that the chaotic search shows better performances
than the tabu search for NP-hard combinatorial optimiza-
tion problems. However, it is not clear that the chaotic
search is better than the tabu search for min-max type prob-
lem. The simulation results for min-max mTSP show that
the chaotic search exhibits also higher performance than
the tabu search. In addition, the chaotic search shows bet-
ter performances than the conventional methods: a team
ant colony optimization algorithm and a method by using
competition-based neural network.

1. Introduction

The traveling salesman problem (TSP) is one of the most
famous and well-studiedNP-hard combinatorial optimiza-
tion problems. In the TSP, a set of n cities and a distance
matrix D = (di j) between cities i and j are given. A sales-
man starts from a city, must visit each city exactly once
and come back to the starting city. The goal of the TSP is
to find the shortest tour.

In the real world, a starting city corresponds to sales-
man’s office and the other cities correspond to customers
or clients. If the number of customers increases, all cus-
tomers cannot be visited in a day (or within the time limit)
by a single salesman. One of the simple idea for resolving
the problem is that the customers are visited by multiple
salesmen: the customers are divided into many groups and
customers in each group are visited by a single salesman.
This traveling problem has been formulated as a multiple
traveling salesman problem (mTSP) [1, 2]. In the mTSP,
m salesmen visit a set of n cities, and each salesman starts
from a city called depot and goes back to the depot. In the
mTSP, each city must be visited exactly once by only one
salesman. Then, the goal of the mTSP is to minimize a total
length of m tours.

The general objective of the mTSP minimizes the total
length of m tours. However, it is important to consider
not only the total cost but also a cost of each salesman,
because, in a real situation, if length of one salesman is
much longer than that of the other salesmen, he feels dis-
contented. Therefore, França et al. proposed a min-max
multiple traveling salesman problem (min-max mTSP) [3].

An objective of the min-max mTSP is to minimize a cost of
the most expensive route among all salesmen. In this paper,
we only deal with the min-max mTSP. Various algorithms
for solving the min-max mTSP have been proposed [4, 5].
Somhom et al. proposed a method by using competition-
based neural network [4] and Vallivaara have used an ant
colony optimization algorithm [5].

As for heuristic algorithms for solving the combinatorial
optimization problems, many algorithms are proposed, for
example, a tabu search [6, 7] and a chaotic search [8–14].
In earlier studies, it has already been shown that the chaotic
search shows better performances than the tabu search [9–
14]. However, it is not clear that the chaotic search is bet-
ter than the tabu search for the min-max type of problem.
Therefore, in this paper, we propose a method by using the
tabu search and a method by using a chaotic neural net-
works. As a result, the chaotic search method exhibits also
higher performance than the tabu search. In addition, the
chaotic search shows better performances than the conven-
tional methods.

2. Min-Max Multiple Traveling Salesman Problem

In a min-max multiple traveling salesman problem
(mTSP), a set of cities V = {1, 2, ..., n} ({1} is a depot),
distance di j (i, j ∈ V) between cities i and j, and a set of
salesmen K = {1, 2, ..,m} are given. Each city is visited
exactly once by only one salesman. An objective of the
min-max mTSP is to minimizes the length of the most ex-
pensive tour among all salesmen. xi jk, yik, fi jk are decision
variables. When a salesman k visits a city j directly after a
city i, xi jk takes 1, otherwise 0. When a salesman k visits
city i, yik takes 1, otherwise 0. fi jk is non-negative integer
decision variables to eliminate sub tours. Using these nota-
tions, a formulation of the min-max mTSP is described as
follow:

min max
k

 n∑
j=1

n∑
j=1

di jxi jk

 (1)

s.t
m∑

k=1

n∑
j=2

x1 jk = m (2)

m∑
k=1

n∑
h=2

xh1k = m (3)

m∑
k=1

yik = 1 ∀i ∈ V (4)
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n∑
h=1

xhik = yik ∀k ∈ K,∀i ∈ V (5)

n∑
j=1

xi jk = yik ∀k ∈ K,∀i ∈ V (6)

fi jk ≤ (n − 1)xi jk ∀i, j ∈ V,∀k ∈ K (7)

m∑
k=1

n∑
i=1

fi1k = n − 1 (8)

f1 jk = 0 ∀k ∈ K, ∀i ∈ V (9)

n∑
j=1

fi jk −
n∑

h=1

fhik = yik ∀i ∈ V , ∀k ∈ K (10)

xi jk ∈ {0, 1} ∀i, j ∈ V , ∀k ∈ K (11)

yik ∈ {0, 1} ∀i ∈ V , ∀k ∈ K (12)

fi jk ≥ 0 ∀i, j ∈ V , ∀k ∈ K (13)

Eq.(1) represents the objective function that minimizes the
maximum length of the tour. Eqs.(2) and (3) expresses that
each salesman goes to any city from a depot and comes
back to the depot from any city. Eq.(4) represents that each
city is exactly visited by one salesman. Eqs.(5) and (6) rep-
resents that if a salesman k visits a city i, the city i is visited
by the salesman k from exactly one city h, and the salesman
goes to exactly one city j from the city i. Eqs. (7)∼(10) are
constraint to eliminate a sub-tour. Eqs. (11)∼(13) are con-
straint of decision variables.

3. Proposed methods

3.1. Local Search Methods

To improve length of the longest tour, we used 2-opt al-
gorithm and CROSS-exchange. The 2-opt algorithm ex-
changes two paths for other two paths in the same tour
(Fig.1(a)). On the other hand, the CROSS-exchange ex-
changes a partial tour in one tour and a partial tour of the
other tours (Fig.1(b)). Local search methods move from a
current solution to a better solution in neighborhoods of the
current solution until an optimal or a local optimal solution
is found. In the case of the min-max mTSP, if length of all
tours after applying the CROSS-exchange is shorter than
that of the current longest tour, the current solution moves
to a new solution. However, in general, local search meth-
ods cannot find optimal solutions due to the local minimum
problem. To resolve the problem, we propose two methods:
a method by using a tabu search [6, 7] and a method by us-
ing a chaotic dynamics [8].

To overcome local optimum solutions, a current solution
must be moved to the best improved solution in the neigh-
borhoods, even if the best improved solution is worse than
the current solution. Here, pmax is the longest tour in the
current solution. To improve the length of pmax, a partial
tour in pmax and a partial tour in other tour p are exchanged
by the CROSS-exchange. Then, after applying the CROSS-
exchange, pmax and p change to p̂max and p̂, respectively.
The neighborhood of the current solution satisfies the fol-
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Figure 1: Graphical representation of local search methods.
In this example, a(i) is the next city to i. In (a), two paths
(i–a(i) and j–a(j)) are deleted from the current tour, then
new two paths, i–j and a(j)–a(i), are added. In (b), a partial
tour a(i) · · · k in one tour and a partial tour a(j) · · · l in the
others are exchanged.

lowing condition: f (pmax) > f (p̂max), where f (pmax) is the
length of pmax. The best improved solution is selected from
the neighborhoods so that ∆ = f (pmax) − f (p̂) is the maxi-
mum.

3.2. Tabu Search Method

The tabu search has been proposed by F. Glover as a gen-
eral combinatorial optimization technique [6, 7]. One of
the essential idea of the tabu search is that a deterministic
approach can avoid a local minimum by using a list of pro-
hibited solutions known as a tabu list. A previous solution
is added to the tabu list and is not allowed to move back to
it for a certain temporal duration called a tabu tenure. In a
proposed method by using the tabu search, the tabu list is
constructed as follows: when the CROSS-exchange is exe-
cuted, a pair of cities i and j (Fig.1(b)) is memorized in the
tabu list.

The procedure of the tabu search with CROSS-exchange
is described as follows:

1. An n-city min-max mTSP is given. An initial solution
is randomly constructed and each tour is improved by
the 2-opt algorithm.

2. To minimize the length of the longest tour, the
CROSS-exchange is applied to the solution until no
further improvement can be obtained.

3. A current solution is improved by the tabu search with
CROSS-exchange.

(a) The best improved solution is selected from
neighborhoods of the current solution.

(b) An operation of the CROSS-exchange corre-
sponding the best improved solution is executed.
The pair of cites i and j is memorized in the tabu
list. The executions of the CROSS-exchange by
using cities i and j are prohibited for τ itera-
tions. Then, if the best solution is obtained, the
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CROSS-exchange and 2-opt algorithm are ap-
plied for the best solution until no further im-
provement can be obtained.

4. The 2-opt algorithm is applied to each tour.
5. Finish one iteration, and repeated the steps 3 and 4 for

sufficiently many times.

3.3. Chaotic Search Method

In a chaotic search method (CS), execution of the
CROSS-exchange is controlled by chaotic dynamics. To
realize chaotic dynamics, we use a chaotic neural network
composed of chaotic neurons [8]. In the CS, n+mC2 neu-
rons are needed to solve an n-city problem with m sales-
men. Figure 2 shows how to construct the chaotic neural
network. Each neuron corresponds to a selection of two
cities in the CROSS exchange (Fig.1(b)). If a neuron fires,
an operation of the CROSS exchange corresponding to the
neuron is executed.

The output of the i jth chaotic neuron is defined by
xi j(t) = f (yi j(t)), where f (y) = 1/(1 + exp(−y/ε)), and
yi j(t) is an internal state of the i jth chaotic neuron at time
t. If xi j(t) > 1

2 , the i jth chaotic neuron fires at the time t,
otherwise resting. The internal state yi j(t) is decomposed
into two parts, ξi j(t) and ζi j(t). Each component represents
a different factor to the dynamics of neurons, a gain effect
and a refractory effect, respectively.

The gain effect is expressed as:

ξi j(t + 1) = max
k,l
{β(t) × ∆i jkl(t)} (14)

β(t + 1) = β(t) +
q

1
n

n∑
i=1

|∆i jkl(t)|
, (15)

where ∆i jkl(t) is a difference between the length of a cur-
rent longest tour and that of a new tour after applying the
CROSS-exchange. β(t) is a scaling parameter at time t and
increases with time t. In this way, we can gradually restrict
the search space in a similar way as the simulated anneal-
ing [15]. q is the scaling parameter of the annealing effect
and n is the number of cities. To obtain the same range
of ξi j(t) for all instances, β(t) is adjusted by using values
of ∆i jkl(t) because the range of ∆i jkl(t) depends on the city
distribution of each instance.

The refractory effect has a similar memory effect as the
tabu search [6, 7]. The same selection of a solution can
be avoided by the refractory effect. The refractory effect is
expressed as:

ζi j(t + 1) = −α
t∑

d=0

kd
r xi j(t − d) + θ (16)

where α is a scaling parameter of the refractory effect, kr is
a decay parameter, and θ is a threshold value. If a chaotic
neuron has fired in the past, Eq. (16) becomes negative.
Therefore, the refractory effect inhibits the firing of the
chaotic neuron in response to its past firing history.

The procedure of the chaotic search is described as fol-
lows:
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Figure 2: How to construct a chaotic neural network to an
n-city mTSP (m = 2). In this figure, circles represent neu-
rons. Each neuron corresponds to a selection of two cities
i and j in the CROSS exchange (Fig.1)

1. An n-city mTSP is given. An initial solution is ran-
domly constructed and each tour is improved by the
2-opt algorithm.

2. To minimize the length of the longest tour, the solution
is improved by the CROSS-exchange until no further
improvement can be obtained.

3. A current solution is improved by the CROSS-
exchange driven by a chaotic dynamics.

(a) Internal state of all neurons is updated.
(b) The i jth neuron whose internal state is maxi-

mum is selected.
(c) If the i jth neuron fires (xi j(t + 1) > 1

2 ), corre-
sponding CROSS-exchange is carried out. Then,
if the best solution is obtained, the CROSS-
exchange and 2-opt algorithm are applied for
the tour until no further improvement can be ob-
tained.

4. The 2-opt algorithm is applied to each tour.
5. Finish one iteration, and repeated the steps 3 and 4 for

sufficiently many times.

4. Simulations and Results

To investigate the performances of the proposed meth-
ods we solved benchmark instances: eil51, eil76, eil101,
kroA200, and fl417 [16]. These problems are used to
investigate the performances of the conventional meth-
ods: a team ant colony optimization (TACO) [5] and a
competition-based neural network (cNN) [4].

The tabu tenure of the tabu search (TS) is set to various
values. The values of parameters in the chaotic search are
set to various values. The values of parameter α in Eq.(16)
are set to between from 0.1 to 1.5 by step size 0.1. The
values of parameter kr are set to between from 0.1 to 0.9 by
step size 0.1. The values of parameters β(0) and q are set to
0.0 and 0.00005 for all instances (Eq.(15)). The values of

- 239 -



Table 1: Computational results of chaotic search (CS), tabu search (TS), team ant colony optimization (TACO), and
competition-based neural network (cNN).

LS CS TS TACO cNN
instance m Best Ave. Best Ave. ∗(α, kr) Best Ave. ∗∗τ Best Ave. Best Ave.

eil51 2 244 269.9 223 224.9 (0.9,0.2) 223 224.1 7 224 224.7 247 248.7
3 185 202.4 159 161.0 (1.2,0.4) 159 161.0 7 159 163.0 170 172.0
4 156 171.6 130 131.5 (1.0,0.4) 130 130.6 3 130 131.6 136 137.3

eil76 2 320 344.9 277 283.1 (1.0,0.2) 277 281.9 5 278 281.0 289 292.0
3 226 256.7 193 196.0 (1.1,0.2) 193 196.4 10 194 199.1 205 120.5
4 181 212.8 158 160.6 (1.3,0.2) 158 160.1 4 161 163.6 159 162.8

eil101 2 374 403.1 330 336.7 (1.0,0.2) 327 336.0 20 327 330.0 340 344.7
3 256 297.4 225 232.1 (1.1,0.1) 226 231.7 4 226 227.8 232 236.0
4 214 244.4 177 181.7 (1.3,0.3) 177 180.8 6 178 181.0 187 189.7

kroA200 2 18518 19975.3 15454 15778.1 (0.9,0.2) 15503 15905.0 33 15376 15499.3 17353 11532.8
3 13308 14958.8 10771 11073.6 (1.1,0.3) 10795 11180.9 44 10997 11186.5 11502 9276.3
4 10760 12242.3 8650 8869.8 (0.8,0.5) 8674 8894.4 17 8917 9134.4 10433 7516.8

fl417 2 8285 9107.0 6742 6898.7 (0.5,0.6) 6715 7010.6 43 6804 6962.8 7207 7266.8
3 6421 7460.5 5134 5397.1 (0.4,0.7) 5229 5462.0 36 5296 5470.0 5618 5902.5
4 5777 6593.4 4703 4855.5 (1.0,0.5) 4716 4875.3 37 4844 5073.8 5032 5109.5

*(α, kr) : The values of parameters α and kr when the best and the average solution are obtained by the CS.
**τ : The tabu tenure when the best and the average solutions are obtained by the TS.

parameters ε and θ are set to 0.01 and 1.0, respectively. The
proposed methods is applied for 1,000 iterations, namely,
1, 000 solutions are obtained in one trial. We compared the
average length of the obtained longest tour with 30 different
initial conditions and the results of conventional methods in
Refs. [4] and [5].

Table 1 shows the results of each method. From Table
1, the performances of the local search is improved by the
tabu search and the chaotic dynamics. The average lengths
obtained by the proposed methods are smaller than that of
the conventional methods for many instances. In addition,
CS and TS find new best result for almost all instances.

However, when the number of salesman is m = 2, TACO
obtains the best result for some instances. One of the possi-
ble reasons for the lower performance is that a method for
improving the length of a single tour is different between
proposed methods and TACO. In the proposed methods,
the 2-opt algorithm is used. On the other hand, in TACO,
the 3-opt algorithm, which is more powerful algorithm than
the 2-opt algorithm, is used.

From Table 1, CS obtains better solutions than TS for
many instances. These results indicate that the chaotic
search is also effective than the tabu search. for min-max
type of combinatorial optimization problem.

5. Conclusions

In this paper, for solving the min-max mTSP, we pro-
posed two new methods : CROSS-exchange with tabu
search and CROSS-exchange driven by chaotic neurody-
namics. From the computational results, we confirmed that
the proposed methods obtain better solutions than the con-
ventional methods. In addition, the chaotic search shows
better performances than the tabu search method. In the fu-
ture work, to improve the proposed methods, we consider

how to tune the values of parameters.
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