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Abstract—In this paper, we shall describe about a basic
fuzzy-estimation theory based on the concept of set-valued
operators, suitable for available operation of complicated
large-scale network systems. Fundamental conditions for
availability of system behaviors of such network systems
are clarified in a form of β-level fixed point theorem for
system of fuzzy-set-valued operators. Here, the proof of
this theorem is accomplished by the concept of Hausdorff’s
ball measure of non-compactness introduced into the Ba-
nach space.

1. Introduction

In extremely complicated large-scale network systems,
precise evaluation and perfect control, and also ideal op-
eration, of overall system behaviors cannot be necessarily
expected by using any type of commonplace technologies
for maintenance, which might be accomplished by simple
measure in usual hierarchical network structures.

In order to effectively evaluate, control and maintain
those complicated large-scale networks, as a whole, the
author has recommended to introduce some connected-
block structure: i.e., whole networks might be separated
into several blocks which are carefully self-evaluated, self-
controlled and self-maintained by themselves, and so,
which are originally self-sustained systems. However, by
always carefully watching each other, whenever they ob-
serve and detect that some other block is in ill-condition
by some accidents, every block can repair and sustain that
ill-conditioned block, through inter-block connections, at
once. This style of maintenance of the system is some-
times called as locally autonomous, but the author recom-
mends that only the ultimate responsibility on observation
and regulation of whole system might be left for headquar-
ter itself, which is organized over all blocks just as United
States Government [1].

Here, let us consider Banach spaces Xi (i = 1, · · · , n)
and Y j ( j = 1, · · · , n), and their bounded convex closed
subsets X(0)

i and Y (0)
j , respectively, corresponding to each

block, Block i and Block j of whole network system. Let us
introduce operators fi j : Xi → Y j such that fi j(X

(0)
i ) ⊂ Y (0)

j

and let fi j be completely continuous on X(0)
i .

For each block : Block i(i = 1, · · · , n), dynamics of

system behaviors can be represented originally by simple
equations:

xi = ai fii(xi), (i = 1, · · · , n), (1)

where ai is a continuous operator: Y (0)
i → X(0)

i . These equa-
tions have solutions x∗i in every X(0)

i (i = 1, · · · , n), accord-
ing to the well-known Schauder’s type of fixed point theo-
rem. Of course, these solutions represent original values of
system behaviors.

fii represents the original performance of the i-th block
itself, fi j represents the operation fed-back through all other
blocks ( j , i) into the original i-th block, and f ji represents
inter-block connections from all other blocks, in order to
repair and sustain the i-th block performance.

However, the fluctuation imposed on the actual system
is nondeterministic rather than deterministic. In this case,
even the effect due to a single cause is multi-valued, and the
behavior is more naturally represented by a set of points,
rather than a single point.

Therefore, it is reasonable to consider some suitable sub-
set of the range of system behavior, in place of single ideal
point, as target which the behavior must reach under influ-
ence of system control. Now, we can name it as an “avail-
able range” of the system behavior. Thus, by the avail-
able range, we mean the range of behavior, in which every
behavior effectively satisfies good conditions beforehand
specified, as a set of ideal behaviors. From such a point
of view, the theory for fluctuation imposed on the system
should be developed concerning the set-valued operator.

The author has given a series of studies on set-valued
operators in functional analysis aspects, and has vigorously
applied it to analysis of uncertain fluctuations of network
systems [2], [3], [4].

Recently, the author gave a general type of fixed point
theorem for the system of set-valued operator equations, in
order to treat with extremely complicated large-scale net-
work systems [1], [5], [7], [8].

Namely, let us introduce n set-valued operators Gi : Xi ×
Πn

jY j × ΠnYi → F (Xi) (the family of all non-empty closed
compact subsets of Xi) (i = 1, · · · , n), where Πn

jY j means
the direct product of n Y j’s, for any j ∈ {1, · · · , n}, and ΠnYi

means direct product of n Yi’s, for fixed i.
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Under some natural conditions, the author presented im-
portant fixed point theorems on systems of set-valued op-
erator equations:

xi ∈ Gi(xi; fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)),
(i = 1, · · · , n). (2)

Proofs of fixed point theorems in ref. [1], [5] were accom-
plished by natural assumptions, on the other hand, the proof
of the same theorem in ref. [7] was accomplished by a re-
fined precise deduction, in weak topology, and the proof in
ref. [8] was accomplished by the ball measure concept of
non-compactness.

For convenience sake, let us define a direct product space
Yi

4
=
∏n

j Y j ×
∏n Yi and also let Y(0)

i be a non-empty
bounded closed convex subset of Y(0)

i . Here, let us consider

a vector vi
4
= (xi, · · · , xi; x1, · · · , xn) ∈ Vi and an operator

fi(vi) : Vi → Yi by

fi(vi)
4
= ( fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)) . (3)

Here, we know that yi j
4
= fi j(xi) ∈ Y j, y ji

4
= f ji(x j) ∈ Yi and

yi
4
= (yi1, · · · , yin; y1i, · · · , yni) ∈ Yi. Therefore, we have a

simple representation of the system of set-valued operators
(2), as follows:

xi ∈ Gi(xi; fi(vi)), (i = 1, · · · , n). (4)

On the other hand, the author recently presented a fixed
point theorem for a general system of fuzzy-set-valued op-
erator equations [6], under natural assumptions and with
the proof similar to ref. [1] and [5].

Besides, the same fixed point theorem was proved pre-
cisely in weak topology in ref.

Further, in this report, we will present a refined esti-
mation theory of the fixed point theorem for such a gen-
eral system of fuzzy-set-valued operator equations, with a
more basic proof by the use of the ball measure of non-
compactness.

2. Fuzzy Set and Fuzzy-Set-Valued Operator

First of all, let us consider a family of all fuzzy sets
originally introduced by Zadeh [10], in a Banach space X
with the norm ‖ ‖, and let any fuzzy set A be character-
ized by a membership function µA(x) : X → [0, 1]. Now,
we can consider an α-level set Aα of the fuzzy set A as
Aα

4
= {ξ ∈ X | µA(ξ) ≥ α}, for any constant α ∈ (0, 1]. The

fuzzy set A is called compact, if all α-level sets are compact
for arbitrary α ∈ (0, 1].

A fuzzy-set-valued operator G from X into X is defined
by G : X → F (X), whereF (X) is a family of all non-empty
, bounded and closed fuzzy sets in X. If a point x ∈ X is
mapped to a fuzzy set G(x), the membership function of
G(x) at the point ξ ∈ X is represented by µG(x)(ξ).

For convenience, let us introduce a useful notation: for
an arbitrarily specified constant β ∈ (0, 1], a point x belongs

to the β-level set Aβ of the fuzzy set A: x ∈ Aβ
4
= {ξ ∈ X |

µA(ξ) ≥ β} is denoted by x ∈β A [11].
Here, let us introduce a new concept of β-level fixed

point: for the fuzzy set G(x), if there exists a point x∗ such
that x∗ ∈β G(x∗), then x∗ is called β-level fixed point of the
fuzzy-set-valued operator G [11].

Now, let us remember that we have introduced a new
metric into the space of fuzzy sets [11, 12].

Definition 1 Let us consider a Banach space X. For any
fixed constant β ∈ (0, 1], the β-level metric ρβ between a
point x ∈ X and a fuzzy set A is defined as follows:

ρβ(x, A) 4= inf
β≤α≤1

dα(x, A), (5)

where

dα(x, A) 4=


inf
y∈Aα
‖x − y‖ if α ≤ αA,

inf
y∈AαA

‖x − y‖ if α > αA.
(6)

Here, αA
4
= supx∈X µA(x). And also, for any fixed constant

β ∈ (0, 1], by means of the Hausdorff metric dH , the β-level
metricHβ between two fuzzy sets A and B is introduced as
follows:

Hβ(A, B) 4= sup
β≤α≤1

Dα(A, B), (7)

where Dα is defined as

Dα(A, B) 4=



dH(Aα, Bα)
if α ≤ min{αA, αB},

dH(AαA , Bα)
if αA < α ≤ αB,

dH(Aα, BαB )
if αA ≥ α > αB,

dH(AαA , BαB )
if α > max{αA, αB}.

(8)

Here, αB
4
= supx∈X µB(x) and the Hausdorff metric dH be-

tween two sets S 1 and S 2 is defined by

dH(S 1, S 2) 4= max{sup{d(x1, S 2)|x1 ∈ S 1},
sup{d(x2, S 1)|x2 ∈ S 2}},

where d(x, S ) 4= inf{‖x− y‖ | y ∈ S } is the distance between
a point x and a set S .

In order to give a new methodology for the discussion
more sophisticated than the one by usual set-valued op-
erators, the author presented mathematical theories based
on the concept of β-level fixed point, by establishing fixed
point theorems for β-level fuzzy-set-valued nonlinear oper-
ators which describe detailed characteristics of such fuzzy-
set-valued nonlinear operator equations, for every level
β ∈ (0, 1] [11, 12].
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3. System of Fuzzy-Set-Valued Operator Equations

Now, let us introduce a more fine estimation theory for
available operation of large-scale system of set-valued op-
erators (2) and (4), by introducing β-level fuzzy estimation.

Originally, these sets are crisp. However, in order to
introduce more fine estimation into these resultant fluctu-
ation sets, here we can reconsider anew these sets Gi as
fuzzy sets. Then, let us replace the above described crisp
sets Gi(xi; fi(vi)) by fuzzy sets with same notations, accom-
panied with suitable membership functions µGi (ξi), ξi ∈ Xi,
which should be properly introduced corresponding to con-
scious planning for the fine evaluation of resultant fluctua-
tions themselves.

In order to realize a more precise analysis, let us intro-
duce different values of β as βi (i = 1, . . . , n), consciously
selected corresponding to every block : Block i.

Now, for any fixed constant βi ∈ (0, 1] (i = 1, . . . , n), we
can introduce a system of βi-level fuzzy-set-valued nonlin-
ear operator equations:

xi ∈βi Gi(xi; fi(vi)), (i = 1, · · · , n). (9)

If there exists a set of βi-level fixed points {x∗i } in X(0)
i

(i = 1, · · · , n), which satisfy the system of βi-level fuzzy-
set-valued operator equations (9), each x∗i can be consid-
ered as a βi-level likelihood behavior of Block i, (i =
1, · · · , n). Here, this βi-level likelihood behavior x∗i can be
found in a closed domain in which the membership func-
tion µGi(x∗i ; fi(v∗i ))(ξi) has value larger than or equal to βi.

4. Fixed Point Theorem For System of βi-level Fuzzy-
Set-Valued Operators

Here, we will present a fixed point theorem for such a
general system of βi-level fuzzy-set-valued operator equa-
tions.

Now, let us introduce a series of assumptions:

Assumption 1 Let the operator fi j : X(0)
i → fi j(X

(0)
i ) ⊂ Y j

be completely continuous (continuous and compact).

Assumption 2 Let the fuzzy-set-valued operator Gi :
X(0)

i ×Yi → F (Xi) (a family of all non-empty compact sub-
sets of Xi) satisfies the following Lipschitz condition with
respect to the βi-level metric Hβi : that is, there are two
kinds of constants 0 < ki < 1 and hi > 0 such that for
any x(1)

i , x
(2)
i ∈ Xi, for any y(1)

i , y
(2)
i ∈ Yi, Gi satisfies the

inequality:

Hβi

(
Gi(x(1)

i ; y(1)
i ),Gi(x(2)

i ; y(2)
i )
)

≤ ki ·
∥∥∥x(1)

i − x(2)
i

∥∥∥ + hi ·
∥∥∥y(1)

i − y(2)
i

∥∥∥ . (10)

Now, we know that for any xi ∈ X(0)
i and fi(vi) ∈ Yi,

G(0)
i (xi fi(vi))

4
= Gi(xi; fi(vi)) ∩ X(0)

i , φ, and, moreover,

there exist projection points x̃i
′ ∈ X(0)

i of arbitrary point
x
′

i ∈ X(0)
i upon the set G(0)

iβi
(xi fi(vi)) such that∥∥∥x̃i

′ − x
′

i

∥∥∥ = min
{ ∥∥∥x′i − zi

∥∥∥ ∣∣∣ zi ∈ G(0)
iβi

(xi fi(vi))
}
, (11)

where Giβi

4
=
{
ξ ∈ Xi|µGi (ξ) ≥ βi

}
.

Then, we have the final result:

Theorem 1 [Fixed Point Theorem] The system of βi-level
fuzzy-set-valued operator equations

xi ∈βi G(0)
i (xi; fi(vi)), (i = 1, · · · , n) (12)

has at least one fixed point x∗i ∈ X(0)
i .

5. The Proof of the Fixed Point Theorem

In order to prove the fixed point theorem; Theorem 1,
on a basic aspect of mathematical foundation, let us intro-
duce Hausdorff’s ball measure of non-compactness χ, as
follows: for the non-compactness of bounded subset S of
real Banach space, Hausdorff’s ball measure χ(S ) is de-
fined by[13]

χ(S ) 4= inf{ε ≥ 0 |
S can be covered with a finite number of
balls of radii smaller than ε}.

(13)

Here, χ(S ) = 0 means that the closure of S is compact.
Now, let us consider an arbitrary point xi ∈ Xi, and the
corresponding arbitrary point yi ∈ Yi. So, let us consider
a bounded closed convex subset X(0)

i ⊂ Xi, and the corre-
sponding bounded closed convex subset V (0)

i ⊂ Vi. Then,
we have a lemma:

Lemma 1 For an arbitrary point xi ∈ X(0)
i , we have

χ(G(0)
i (xi; fi(V

(0)
i ))) = 0, (14)

where,

G(0)
i (xi; fi(V

(0)
i )) 4=

∪
vi∈V (0)

i

G(0)
i (xi; fi(v

(0)
i )). (15)

Eq. (14) means that the convex closure of G(0)
i (xi; fi(V

(0)
i ))

belongs to F (Xi).

Next, let us define:

G(0)
i (X(0)

i ; fi(V
(0)
i )) 4=

∪
xi∈X(0)

i ,vi∈V (0)
i

G(0)
i (xi; fi(vi)). (16)

Then, we have a lemma:

Lemma 2

χ(G(0)
i (X(0)

i ; fi(V
(0)
i ))) ≤ ki · χ(X(0)

i ). (17)
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Next, let us introduce some family of non-empty, con-
vex, compact sets, invariant to the set-valued operator
G(0)

i (xi; fi(vi)). For such a purpose, we shall prepare the
following lemma:

Lemma 3 Let X(0) be a bounded, closed and convex subset
of the real Banach space X, and let the set-valued operator
F : X → F (X) be k-Lipschitz with respect to the non-
compactness measure χ, with a Lipschitz constant k : (0 <
k < 1): i.e., for any convex subset A ⊂ X(0), there exists a
constant k(0 < k < 1) such that

χ(F(A)) ≤ k · χ(A), (0 < k < 1). (18)

If, let us introduce a sequence {Wm}(m = 0, 1, 2, · · ·) by
the successive procedure such that W0 = X(0)

i , and Wm
4
=

conv.F(Wm−1), (m = 1, 2, · · ·), then we have in turn

X(0)
i = W0 ⊃ W1 ⊃ W2 ⊃ · · · (19)

and
χ(Wm) ≤ km · χ(W0). (20)

When m→ ∞, χ(Wm)→ 0, and if we put W∞
4
=
∩∞

m=0 Wm,
then, W∞ is a non-empty, convex compact set, invariant to
the set-valued operator F such that

F(W∞) ⊂ W∞. (21)

From this flow of deduction, now, we can refer the
well-known Ky Fan’s fixed point theorem on upper semi-
continuous set-valued operators, as follows:

Lemma 4 (Ky Fan [14]) In a locally-convex topological
linear space X, let V be its non-empty convex compact
subset. Let a set-valued operator H : V → H(V)
4
= {Family of non-empty closed convex subsets} be upper
semi-continuous. Then, there exists a fixed point x∗ such
that x∗ ∈ H(x∗) ⊂ V.

As a result, by Ky Fan’s fixed point theorem, there exist
fixed points xi ∈βi G(0)

i (xi; fi(v0)) in all subsets W∞ with
V (0)

i∞ (i = 1, · · · , n).

6. Concluding Remarks

Thus, the fluctuation analysis of this type of large-scale
network systems, undergone by undesirable uncertain fluc-
tuations, can be successfully accomplished at arbitrary
fine-level of estimation, by immediate application of the
here-presented fixed point theorem for system of βi-level
fuzzy-set-valued nonlinear operators, with consciously se-
lected different value of parameter βi, for every Block i.

In this paper, the fixed point theorem was proved basi-
cally by using the concept of Hausdorff’s ball measure of
non-compactness.

References

[1] K. Horiuchi, “A theory useful for evaluation and control
of multi-media network systems,” URSI General Assem-
bly, Toronto, C8-3 (1999); ISITA2000, Hawaii, No. 0086
(2000).

[2] K. Horiuchi, “Theory of nondeterministic perturbation and
sensitivity analysis,” ISCAS, Tokyo, R10-7, (1979).

[3] K. Horiuchi & R. Iino, “A synthetic analysis on nondeter-
ministic fluctuations of systems,” IEICE Technical Report,
CAS88-54, NLP88-25 (1988).

[4] K. Horiuchi, “Functional analysis of nonlinear system fluc-
tuations,” IEICE Transactions, Vol.E74, No.6, pp.1353-
1367 (1991).

[5] K. Horiuchi, “A mathematical theory for available opera-
tion of network systems extraordinarily complicated and di-
versified on large-scales,” IEICE Trans., Vol.E84-A, No.9,
pp.2078-2083 (2001).

[6] K. Horiuchi, “Fine estimation theory for available operation
of complicated large-scale network systems ,” NOLTA2004,
Fukuoka, Japan (2004); IEICE Trans., Vol.E88-A, No.10,
pp.2636-2641 (2005).

[7] K. Horiuchi, “A refined theory for available operation
of extremely complicated large-scale network systems,”
NOLTA2005, Bruges, 1-3-2, (2005); IEICE Trans. Vol.
E89-A, No. 10, pp.2692-2696 (2006).

[8] K. Horiuchi, “Basic theory for available operation
of extremely complicated large-scale network systems,”
NOLTA2006, Bologna, Italy No.100052 (2006); IEICE
Trans. Vol. E90-A, No.10, pp.2232-2238 (2007).

[9] K. Horiuchi, “A fuzzy estimation theory for available op-
eration of extremely complicated large-scale network sys-
tems,” NOLTA2007, Vancouver, Canada No.21 (2007); IE-
ICE Trans. Vol. E91-A, No.9, pp.2396-2402, (2008).

[10] L. A. Zadeh: “Fuzzy sets,” Inform. Control, vol. 8, pp.338-
353 (1965).

[11] K. Horiuchi and Y. Endo, “A mathematical theory of system
fluctuations using fuzzy mappings,” IEICE Trans., Vol. E76-
A, No.5 pp.678-682 (1993).

[12] K. Horiuchi and Y. Endo, “Fluctuation analysis of
information-transfer systems with feedback confirmation
channels by means of fuzzy-set-valued mapping concept,”
IEICE Trans., vol. E84-A, no.4, pp.1042-1049 (2001).
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