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Abstract– Transfer learning has been studied to reduce 

the learning cost when the system parameters are changed. 

We numerically investigate transfer learning based on 

photonic reservoir computing using a semiconductor laser 

with optical feedback modulation. We succeed in inferring 

the dynamics of one variable in the Lorenz model whose 

parameters are changed from the learning scheme. 

  

1. Introduction 

 

Neural networks are crucial for machine learning that 

imitate the structure of the human brain. One type of the 

neural networks is the recurrent neural networks, which are 

the networks with self-feedback connections of neurons 

and retain past information in the network as memory. 

Recurrent neural networks need to learn the weights among 

connections in the input, network, and output layers, and 

large computational cost is required. Recently, reservoir 

computing has been proposed, which is derived from the 

recurrent neural networks and used for performing speech 

recognition and time series prediction [1]. The advantage 

of reservoir computing is easy learning of the weights 

because the weights in the network are fixed randomly and 

only the output weights are trained.  

Recently, physical implementations of delay-based 

reservoir computing have been proposed [2]. In this method, 

the network is constructed by defining virtual nodes using 

temporal waveforms of laser output in a time-delayed 

feedback loop. Several methods of photonic delay-based 

reservoir computing have been reported using 

semiconductor lasers [3-6]. 

It is important to satisfy two properties for the 

implementation of reservoir computing: high 

dimensionality and consistency [7]. High dimensionality is 

the property of reservoir computing to convert low 

dimensional input signals into high dimensional signals. 

Consistency is the property of exhibiting the same output 

signal from the same input signal. It has been shown that 

semiconductor lasers with optical feedback exhibit 

consistency, although they generate chaotic signals by 

time-delayed optical feedback. Therefore, semiconductor 

lasers are considered as suitable photonic sources for 

implementing delay-based reservoir computing. 

Transfer learning has been proposed [8,9], which is a 

learning method that transfers the knowledge (weights) 

from one system with large training data to another system 

with small training data. Transfer learning is effective 

under the condition where the property of training data is 

changed frequently. Transfer learning is useful for inferring 

unmeasured variables when the amount of training data is 

insufficient. However, transfer learning has not been 

applied to photonic delay-based reservoir computing. 

In this study, we numerically investigate transfer 

learning based on photonic reservoir computing using a 

semiconductor laser with optical feedback modulation. 

 

2. Numerical model of semiconductor laser with 

optical feedback modulation. 

 

 We use a semiconductor laser with optical feedback 

modulation for reservoir computing. The light emitted from 

the laser is injected into a phase modulator, reflected by an 

external mirror, and reinjected into the laser. The numerical 

model of the Lang-Kobayashi equations can be expressed 

as follows [10]. 
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Where E(t) is the complex electric-field amplitude and 

𝑁(𝑡) is the carrier density. In Eq. (1), the term including 𝐺𝑁 

represents spontaneous emission, and gain saturation is 

taken into account. Numerical simulations can reproduce 

values close to the laser output intensity obtained in the 

experiments. −1/𝜏𝑝 is the decay rate of the electric-field 

amplitude, τ is the feedback delay time, and 𝜙0 is the bias 

of the optical feedback phase. In Eq. (2), −1/𝜏𝑠 represents 

the decay rate of the carrier density. 

 

3. Concept of delay-based reservoir computing 

 

 Figure 1 shows a schematic diagram of delay-based 

reservoir computing. Reservoir computing consists of an 

input layer, a reservoir layer, and an output layer. The input 

layer generates an input modulation signal for reservoir 

computing. First, the input data are expanded for a mask 
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period. The mask period is set to be equal to the feedback 

delay time τ. Next, a binary random mask signal with an 

interval θ is generated and multiplied to the input data. The 

input scaling factor is also multiplied, which is a parameter 

that determines the magnitude of the modulation signal. 

The modulation signal is expressed as follows. 

 

𝑆(𝑡) = 𝑢(𝑡) × 𝑚(𝑡) × 𝛾 (3) 

 

Where 𝑆(𝑡)  is the modulation signal, 𝑢(𝑡)  is the input 

signal, 𝑚(𝑡) is the mask signal, and 𝛾 is the input scaling 

factor. The generated modulation signal is injected into the 

reservoir layer. 

 The reservoir layer consists of a semiconductor laser and 

a time-delayed feedback loop. Complex transient dynamics 

is obtained from the laser, and the temporal waveforms of 

the laser output are generated. Virtual node states are 

obtained by measuring the temporal waveforms. The 

number of virtual nodes 𝑁 is determined as follows. 

 

𝑁 =
𝜏

𝜃
 (4) 

 

Where 𝜏 is the delay time and 𝜃 is the node interval.  

 In the output layer, the weighted linear sum of the virtual 

node states is calculated as the output signal as follows.  

 

𝑌(𝑛) = ∑ 𝑤𝑖𝑥𝑖(𝑛)

𝑁

𝑖=1

 (5) 

where 𝑌(𝑛) is the output for the n-th input and 𝑥𝑖 is the i-

th virtual node state. The weight 𝑤𝑖  of the i-th virtual node 

states is calculated using the least squares method as 

follows. 

 

1

𝐿
∑(𝑦(𝑛) − 𝑌(𝑛))

2
→ 𝑚𝑖𝑛

𝐿
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Fig. 1: Schematic diagram of delay-based reservoir computing.  
 

 

 

 

 

 
Fig. 2: Schematic diagram of transfer learning based on reservoir 

computing.  

 

 

4. Transfer learning based on reservoir computing 

 

 A schematic diagram of the transfer learning used in this 

study is shown in Fig. 2. Transfer learning consists of two 

domains: source and target domain. In the source domain, 

we train the weights 𝑤𝑆  of reservoir computing using 

30000 training data. In the training process, reservoir 

computing infers one variable from another variable of the 

dynamical model with a parameter value.  

In the target domain, the correction weights 𝛿𝑤  are 

calculated using a fewer training data (500 data) for the 

dynamical model with a slightly different parameter value. 

The correction weights 𝛿𝑤 are calculated to minimize the 

following equation [8]. 

 

휀(𝛿𝑤) = 〈(𝑣′(𝑡) − ∑(𝑤𝑖
𝑆 + 𝛿𝑤𝑖)𝑟𝑖

′(𝑡)

𝑁
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)

2
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2 (7) 

 

where 𝑣′(𝑡)  is target value, 𝑟𝑖
′(𝑡)  is the i-th virtual node 

state, 〈𝑎〉𝑇 ∶=
1

𝑇
Σ𝑘=1

𝑇 𝑎(𝑘)  and ‖𝛿𝑤‖2
2 = Σ𝑖=1

𝑁 𝛿𝑤𝑖
2 . We 

denote the weights calculated in the source domain by 𝑤𝑆. 

The amount of knowledge transfer from the source to target 

domain is controlled by the transfer rate 𝜇. 

 

5. Inference task 

 

As a task for reservoir computing and transfer learning, 

we infer the dynamics of one variable from another variable 

in the Lorenz model with different parameters. The Lorenz 

model is described as follows. 

 
𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥) (8) 

𝑑𝑦

𝑑𝑡
= 𝑥(𝑟 − 𝑧) − 𝑦 (9) 

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧 (10) 
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Where 𝜎 is set to 10 and 𝑏 is set to 8/3. 𝑟 is a variable. 

The performance of reservoir computing is evaluated by 

using the normalized mean square error (NMSE). NMSE is 

defined by the following equation. 

 

𝑁𝑀𝑆𝐸 =
1

𝐿

∑ (�̅�(𝑛) − 𝑦(𝑛))
2𝐿

𝑛=1

𝑣𝑎𝑟(�̅�)
 (11) 

 

where 𝐿 is the total number of data, 𝑛 is the time step of the 

input data, 𝑦(𝑛) is the output of reservoir computing, �̅�(n) 

is the ideal target, and 𝑣𝑎𝑟(�̅�)  is the variance of �̅� (n). A 

smaller value for NMSE indicates higher performance. 

 

 
Fig. 3:  Temporal waveforms of the Lorenz model with the 

parameter value of  (a) 𝑟 = 60 (c) and (b) 𝑟′ = 80. 

 

6. Results 

 

We numerically investigate the performance of inference 

of transfer learning based on reservoir computing using a 

semiconductor laser. We set the parameter values of 𝑟 = 60 

in the source domain, and 𝑟′ = 80 in the target domain. We 

use 30000 and 500 training data in the source and target 

domains, respectively. Figure 3 shows the temporal 

waveforms of the source and target domains. Chaotic 

dynamics are changed at different parameter values. 

Figure 4(a) shows the result of inferred output 𝑧(𝑡) from 

the input 𝑥(𝑡)  in the Lorenz model without transfer 

learning. The black line indicates the temporal waveform 

of the target, the red line indicates the inferred waveform, 

and the blue line indicates the error between them. The 

input and inferred signals are very different, and large 

errors are obtained.  

Figure 4(b) shows the result of inferred output 𝑧(𝑡) from 

the input 𝑥(𝑡) in the Lorenz model with transfer learning. 

The input and inferred signals look very similar. The value 

of NMSE is 0.0398 with transfer learning. Therefore, we 

succeed in performing transfer learning when the parameter 

value of the Lorenz model is changed. 

 

 
Fig. 4: Temporal waveforms of inference of 𝑧(𝑡) by using 𝑥(𝑡) 

(a) without and (b) with transfer learning. The target (black), 

inferred (red) and error (blue) signals are shown. 
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 Next, we investigate the dependence of the performance 

of transfer learning on the amount of training data. Figure 

5 shows the change in NMSE by varying the amount of 

training data in the target domain. The black line represents 

NMSEs in the target domain with transfer learning at the 

transfer rate 𝜇 = 10, and the red line represents the NMSEs 

at the transfer rate 𝜇 = 0. The blue dashed line represents 

the NMSEs without transfer learning. NMSEs are matched 

in the cases of the transfer rate 𝜇 = 0  and no transfer 

learning. In the case of transfer rate 𝜇 = 0, trained weights 

in the source domain are not used, and only the trained 

weights in the target domain are used. The difference 

between the black and red lines indicates that transfer 

learning is effective to reduce NMSEs when the amount of 

training data is small. 

 
Fig. 5: Inference error (NMSEs) as the amount of training data in 

target domain is changed. The transfer rate is 𝜇 = 10 (black) and 

𝜇 = 0 (red). No transfer learning is used (blue). 

 

 

7. Conclusions 

 

 In our study, we numerically investigated transfer 

learning based on photonic reservoir computing using a 

semiconductor laser with optical feedback. We succeeded 

in inferring one variable from another variable in the 

Lorenz model with different parameter values in the source 

and target domains. We found that transfer learning is 

effective when the amount of data is small in the target 

domain.  
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