
Characteristics representation of reservoir set based on memory capacity and
nonlinearity

Tomoya Kitamura†, Kazuyuki Yoshimura‡

†Graduate School of Sustainability Science, Tottori University
4-101 Koyama Minami, Tottori 680-8552, Japan

‡Faculty of Engineering, Tottori University
4-101 Koyama Minami, Tottori 680-8552, Japan

Email:m21j4012c@edu.tottori-u.ac.jp, kazuyuki@tottori-u.ac.jp

Abstract—Reservoir Computing has various degrees of
freedom in terms of reservoir parameters, topology and ac-
tivation functions; however, the design strategy of a good
reservoir is still unclear. In this paper, we focus on memory
capacity and nonlinearity, where the memory and nonlin-
earity indices represent the characteristics of the reservoir
dynamics. And we show that the two indices correlate with
the information processing performance of the reservoir for
a particular benchmark task.

1. Introduction

Various dynamic systems such as electronic circuits, op-
tical devices such as lasers, and fluid systems have the
property of ”obtaining the same output for the same input
signal that is repeatedly input,” and the information pro-
cessing method that utilizes this property is reservoir com-
puting (RC) [1]. Reservoir computing is mainly used for
problems involving time series data, such as time series
classification, time series generation, and time series pre-
diction. Reservoir computing consists of three layers: an
input layer, an intermediate layer (reservoir) using dynam-
ical systems, and an output layer. The intermediate layer
(reservoir) is fixed without learning, and only the coupling
strength from the intermediate layer to the output layer is
learned using the Least Squares Method (LSM). Since the
reservoir does not need to be trained, various physical dy-
namical systems can be used as reservoirs, making it suit-
able for physical implementations. By making good use
of the characteristics of physical phenomena in RC, an in-
novative ”computer” that achieves high speed and energy
saving is expected to be realized.

A RC that uses a recurrent neural network (RNN), which
is a neural network with loops in the coupling between
units, as a reservoir is called an Echo State Network (ESN)
[1]. The numerical experiments in this paper deal with
ESN.

When applying ESN to various tasks, such as time series
forecasting, the optimal structure of RNN is considered to
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be task-specific: the structure of RNN includes various pa-
rameters, the functional form of the unit activation func-
tion, and the coupling topology among the units. When
there are many elements to determine the reservoir struc-
ture, the reservoir structure to be searched becomes huge,
and it becomes difficult to select the optimal structure [2].
From the viewpoint of clarifying guidelines for selecting
an appropriate reservoir for each task from a huge set of
reservoirs, a standard index that expresses reservoir char-
acteristics is desired first.

In recent years, it has been revealed that there is a uni-
versal trade-off between memory capacity and nonlinear
processing capacity in the computational performance of
reservoirs, and it has been suggested that these are funda-
mental properties that characterize reservoirs [3, 4]. In this
paper, we used memory capacity [5] and nonlinearity [3]
as candidates for the aforementioned indices, and investi-
gated whether these two indices can be used to express the
characteristics of a reservoir for a mixed unit-type reservoir
[4].

2. Reservoir model

2.1. Reservoir model

Although various structures can be considered for RNN
to be used as reservoirs for ESN, in this paper, two types of
RNN are used as reservoirs: RNN with random coupling
and ring coupled RNN.

2.2. State variables and time evolution equations

The reservoir under consideration in this paper consists
of one bias unit and N units, where the bias unit is num-
bered 0 and the N units are numbered 1, 2, 3, ...,N. The
i-th unit has a state variable xi attached to it. The i-th unit
has a state variable xi, and the state variable xi of each unit
except the bias unit depends on the discrete time variable
t = 0, 1, 2 . . .. The time evolution of xi is assumed to follow
the following equation.

xi(t) = ϕi

g
 N∑

i=1

Ji jx j(t − 1) + αεiS (t)

 + βJi0x0

 (1)
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The state variable x0 of the bias unit is always 1
without time evolution. The first combination of ac-
tivation functions that we deal with here is ϕi(x) =
sinc (x) ,ReLUc

−c(x), and the second combination is ϕi[x] =
tanh (x) ,ReLUc

−c(x). where sinc(x) = sin(πx)/πx. On
the other hand, ReLUc

−c(x) is a function that x →
min(max(−c, x), c) for input x. ReLUc

−cis a linear function
with a cutoff on the linear function to prevent divergence
of the reservoir dynamics. The ratio of nonlinear function
units to linear function units in the reservoir is determined
by the mixing ratio p. That is, p = A/N, where A is the
number of units that have nonlinear functions as their acti-
vating functions.

Ji j is the component of the coupling matrix J between
units in the reservoir, and Ji j represents the coupling coeffi-
cient from the j-th unit to the i-th unit. The coupling matrix
of a reservoir consisting of N units, not including the bias
unit, is generally given by the following square matrix.

J =



J11 · · · J1i · · · J1N
...
. . .

...
Ji1 Jii JiN
...

. . .
...

JN1 · · · JNi · · · JNN


(2)

There are two types of reservoir topologies: random cou-
pling and ring coupled. In the random coupled type reser-
voir, all the above matrix components Ji j follow a uniform
distribution U [−1, 1] with zero mean. In the ring coupled
type reservoir, only the matrix component Ji j with adjacent
unit number follows the uniform distribution U [−1, 1] with
zero mean, and the remaining matrix components Ji j are
treated as zero, as in equation (3).

J =



0 J12 0 · · · 0
0 0 J23 · · · 0
...

...
...
. . .

...
0 0 0 · · · JN−1N

JN1 0 0 · · · 0


(3)

The coupling coefficient Ji0 of the bias units is randomly
given by 1 or -1 for each i. S (t) ∈ R denotes the input from
the input layer to each unit. g, α, β ∈ R are parameters
greater than or equal to zero.

3. Memory capacity and nonlinearity

Consider the case where a single task is defined for per-
formance evaluation. That is, given an unknown functional
relation y(t) of the task, we assume the case where CT (X, y)
is introduced according to the literature [3]. In this case,
the capacity CT (X, y) is introduced according to the litera-
ture [3], where CT (X, y) is a measure of the accuracy with
which the reservoir X estimates the function y, and is de-

fined by the following equation (4).

CT (X, y) = 1 − 1
⟨y2⟩T

min
w⃗

E(w⃗) (4)

T is the number of data, ŷ is the output of the reservoir,
E(w⃗) is the mean squared error, and min E(w⃗) is the weight
wi,i = 0, 1, ...,N of the combination that gives the mini-
mum value wi,i = 0, 1, ...,N such that the minimum value is
given. (y2)T denotes the mean of the square 1/T

∑T
t=1(y(t))2.

Storage capacity [5] and nonlinearity [3] are indices de-
fined based on the ability of the reservoir to approximate
a large number of functions. The function y used in this
case is explained below. First, {di} is an infinite sequence
of numbers satisfying di ∈ Z, di ≥ 0. The function y{di} is
defined as follows.

y{di}(t) =
∞∏

i=0

Pdi (s(t − i)) (5)

where Pn(x) is an n-th order Legendre polynomial and is
defined by the following equation.

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, n = 0, 1, 2, ... (6)

The right-hand side of equation (5) is an infinite prod-
uct of Legendre polynomial, and the input s(t − i) to the
reservoir at time t − i, i steps before time t, is used as the
argument for each Pdi . In the numerical experiments in the
following section, s(t) is assumed to be a random variable
that is independent at each time and follows a uniform dis-
tribution U[−1, 1]. Next, we discuss the storage capacity L
[5] and the nonlinear transformation capability NL [3]. De-
note the reservoir under consideration by X. For this reser-
voir, L is defined by the following equation.

L[X] =
∑

{di},di∈{0,1}

 ∞∑
i=0

di

Ca
T (X, y{di}) (7)

Ca
T (X, y{di}), where y{di} in equation (5) is adopted as y in

equation (4), and from this Ca
T (X, y{di}) is defined as follows.

Ca
T
(
X, y{di}

)
= θ(CT (X, y{di}) − a)CT (X, y{di}) (8)

where θ(x) is the Heaviside function defined by the follow-
ing equation.

θ (x) =

1, x > 0
0, x ≤ 0

(9)

On the other hand, for a reservoir X, NL is defined as
follows.

NL[X] =
∑
{di}

 ∞∑
i=0

di

Ca
T (X, y{di}) − L (10)

Summing over all possible {di} the summation in equa-
tion (10) includes sums over {di} such that L is constructed.
L is subtracted in equation (10) to eliminate the effect of
these terms.
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4. Benchmark Task

We investigate whether the (L,NL) pairs are useful as
a measure to characterize the computational performance
of a reservoir. For this purpose, we give a specific task
and investigate the correlation between the value of (L,NL)
and the reservoir’s performance on that task. The follow-
ing function approximation problem is used as the specific
task. The function approximation problem is described be-
low. The following function is used.

y (t) = sin

πν τ∑
i=0

s (t − i)
√
τ + 1

 (11)

where the input s is assumed to follow a uniform distri-
bution U[−1, 1]. The parameter ν ∈ R controls the degree
of nonlinearity of the task; the larger the value of ν, the
more nonlinear the task is. The parameter τ ∈ N controls
the time delay. By manipulating these parameters ν and τ,
the nonlinearity and time delay of the task can be adjusted,
and the performance of the reservoir can be studied in de-
tail. The reservoir training for the above task is described
below. The input signal to the reservoir at time t is s(t), and
the target value of learning is y(t), obtained by equation
(11). These many pairs D = {s(t), y(t)}Tt=1 are the training
data.

5. Numerical experiment results

In this section, we present the results of numerical ex-
periments. For each reservoir X in the reservoir set, a value
of (L,NL) can be computed. By plotting the points of this
value on the (L,NL) plane, a scatter plot is obtained. Fig-
ures 1, 2, and 3 show the NMSE of a function approxima-
tion problem on a plane with L on the horizontal axis and
NL on the vertical axis. Here, the number of units in the
reservoir is set to N = 100. The number of training data
T = 4000 for the task and function approximation problem
used to find L and NL. The left and right sides of each fig-
ure correspond to the results for the randomly coupled and
ring-coupled reservoirs, respectively.

In Figures 1, 2, and 3, the parameter τ, which determines
the time delay of the function approximation problem, is
reduced to 6, 3, and 1, respectively, while the parameter ν,
which determines the degree of nonlinearity, is increased to
1/
√

2, 1.0, and 2.0, respectively. Figure 1 shows the NMSE
of the function approximation problem when the parame-
ters (ν, τ) = (1/

√
2, 6). Compared to Figures 2 and 3, this

task has a larger time delay τ, which is a parameter of the
function approximation problem, and a smaller nonlinear-
ity ν. Under these parameter conditions, the NMSE tends to
be low in the region where L is large. Next, Figure 2 shows
the NMSE for the parameter (ν, τ) = (1.0, 3) for the func-
tion approximation problem. Compared to Figures 1 and 3,
both the time delay τ and the degree of nonlinearity ν are
intermediate for this task. For this parameter condition, the
NMSE tends to be low in regions where both L and NL are

large. Finally, Figure 3 shows the NMSE for the parame-
ter (ν, τ)=(2.0,1) for the function approximation problem.
Compared to Figures 1 and 2, this task has a smaller time
delay τ and a larger nonlinearity ν. Under these parameter
conditions, the NMSE tends to be low in regions where L
is small and NL is large. These results indicate that there is
a certain correlation between the value of (L,NL) and the
NMSE of function approximation problems. It can also be
seen that the reservoirs corresponding to the boundaries of
the colored regions on the (L,NL) plane tend to have a low
NMSE for the function approximation problem.

Figure 1: function approximation task. (ν, τ)=(1/
√

2, 6)

Figure 2: function approximation task. (ν, τ)=(1.0, 3)

6. Discussion

In this section, we discuss the possibility of utilizing the
(L,NL)-valued plots of the reservoir set proposed in this
paper.

The computational results in Section 5 show that there
is a certain correlation between the indicator (L,NL) and
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Figure 3: function approximation task. (ν, τ)=(2.0,1)

the reservoir computation performance in the function ap-
proximation task. It is expected that various tasks other
than the function approximation task treated here also have
a balance between memory capacity and nonlinear conver-
sion capability suitable for their processing, i.e., the value
of (L,NL).

Given an arbitrary task, we consider the case of con-
structing a new reservoir suitable for the task. In this case,
the parameter values in the reservoir need to be appropri-
ately selected. Once a plot of the (L,NL) values of the
reservoir set corresponding to various changes in the pa-
rameter values is obtained, it is possible to determine the
correspondence between changes in the parameter values
and changes in the reservoir’s basic properties: memory ca-
pacity and nonlinearity. In particular, we can find a method
of changing parameters to change their balance while keep-
ing the memory capacity and nonlinearity as large as pos-
sible, respectively. By adjusting parameters according to
this method, it is possible to obtain parameter settings more
efficient than brute-force search and more suitable for the
task. This suggests that the method of understanding reser-
voir characteristics through parameters and indices L and
NL is effective.

In addition, the (L,NL) value plots have the potential
to be used to evaluate the characteristics of various tasks.
There are various tasks to evaluate reservoir performance,
but the required memory capacity or nonlinearity for each
task is not known in advance. In such a case, one possible
use is to analyze which reservoirs with low NMSE exist
in which region on the index L,NL plane when one reser-
voir set is fixed, in order to clarify the degree of memory
capacity and nonlinearity required by the task in question.

7. Conclusion

In this paper, we focused on two indices, memory capac-
ity L and nonlinearity NL, in a RC with a mixed-unit type
reservoir with random and ring coupling [4]. We then in-

vestigated whether these two indices can be used to charac-
terize the reservoir performance based on the relationship
between (L,NL) values and NMSE in function approxi-
mation problems. The results show that there is a certain
correlation between the value of (L,NL) and the NMSE
of function approximation problems. Therefore, the index
L,NL can be used to characterize the performance of the
reservoir set.

As future work, we would like to investigate whether the
definition of the indices L and NL can be revised or new
indices can be introduced to improve the generality of the
indices.
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