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Abstract—The quadratic assignment problem (QAP) is
one of the most difficult NP-hard combinatorial optimiza-
tion problems. To solve the QAP, various approximate al-
gorithms for finding near optimal solutions have already
been proposed. Among them, a method which uses the
Hopfield neural network (HNN) can be applied to find so-
lutions. However, this method cannot always offen gets
good performance because it stuck at local minima. To
avoid local minima, a method which uses chaotic neural
network (CNN) has already been proposed. The method
with CNN can solve the QAP effectively and shows good
performance. On the other hand, to avoid undesirable local
minima, it is possible to inject dynamical noise to a solver.
Then, we have already proposed a method which uses both
chaotic dynamics and dynamical noise for avoiding local
minima. The result shows that when a small amount of dy-
namical noise is added, the performance becomes high. In
this paper, we investigate the performance of the method
using several types of dynamical–stochastic and determin-
istic noise. To analyze the proposed method, we investigate
the relation between the performance and the Lyapunov ex-
ponents of the CNN with such dynamical noise.

1. Introduction

In the real world, various combinatorial optimization
problems exist, for example, VLSI design, scheduling
problem, routing problem, facility layout problem, and so
on. It is important to obtain optimal solutions of these prob-
lems because operation costs can be reduced. These kind
of combinatorial problems can be formulated as a quadratic
assignment problem (QAP)[1]. It is almost impossible to
find an optimal solution in reasonable time, because the
QAP is classified into an NP-hard problem. Then, it is re-
quired to develop approximate algorithms for finding near
optimal solutions in reasonable time.

As the approximate algorithm, a method which uses the
mutual connection neural networks or the Hopfield neu-
ral network (HNN) has already been proposed[2]. In this
method, a firing pattern of HNN represents a solution of the
QAP. If we decide good synaptic weights of HNN for solv-
ing the QAPs, we can obtain a good solution by descent
down-hill dynamics of HNN. However, this method gets
trapped into local minima. Then, to avoid local minima, a

method which uses chaotic neural network (CNN)[3] has
already been proposed [4, 5]. Chaotic dynamics of CNN
works to avoid the local minima effectively. As another
method for avoiding local minima, a method which injects
dynamical noise into HNN for solving combinatorial op-
timization problems has also been proposed [8, 9]. Us-
ing fluctuation of dynamical noise, this method can escape
from local minima, and often exhibits good performance.
We have already proposed a new algorithm for solving
QAP by combining these two basic strategies chaotic dy-
namics and dynamical noise[6, 7]. As a result, the com-
bination of chaotic dynamics and dynamical noise leads to
better performance.

On the other hand, in Refs.[8, 9], it is shown that a
method, which uses the HNN with intermittency chaotic
noise near period three window of the logistic map, shows
higher performance. It is pointed out that intermittency
chaotic noise near period three window of the logistic map
offers better solution than other type of chaotic noise[8, 9].
Then, in this paper, first, we investigate the performance
of combination of chaotic dynamics and chaotic noise for
solving QAPs. Next, to analyze the proposed method,
we calculate Lyapunov exponents of CNN with dynamical
noise, and investigate the relation between the Lyapunov
exponents and the solving performance.

2. Solving Quadratic Assignment Problem with Hop-
field Neural Network

2.1. Quadratic Assignment Problem

The quadratic assignment problem (QAP) is one of the
NP-hard combinatorial optimization problems. The goal of
the QAP is to find an optimal location of facilities to cities
that to minimize the total cost. The QAP is described as
follows: given two N × N matrices, a distance matrix D
and a flow matrix C, find a permutation p which minimizes
a value of the following objective function F(p):

F(p) =
N
∑

i=1

N
∑

j=1

di jcp(i)p( j), (1)

where di j is the (i, j)th element of D, p(i) is the ith ele-
ment of p, cp(i)p( j) is the (p(i), p( j))th element of C, and N
is a size of the problem. The QAP belongs to the NP-hard
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problems. Thus, it is required to develop an effective ap-
proximate algorithm for finding near optimal solutions in a
reasonable time frame.

2.2. Hopfield Neural Network for Solving QAP

As an approximate algorithm for solving the QAP, a
method which uses the descent down-hill dynamics of
the Hopfield neural network (HNN) has already been
proposed[2]. In this method, to solve an N-size QAP, N×N
neurons are prepared. The (i, m)th neuron corresponds an
assignment of the ith facility and the mth city. If the ith
facility is assigned to the mth city, an output of the (i, m)th
neuron xim is 1, otherwise, 0. The output pattern of the
HNN X = (xim) represents a solution of QAP. In the HNN,
the energy function is defined as follows:

F(X) = A
N
∑

i=1

(
N
∑

m=1

xim − 1)2

+B
N
∑

m=1

(
N
∑

i=1

xim − 1)2

+

N
∑

i=1

N
∑

j=1

N
∑

m=1

N
∑

n=1

di jcmnxim x jn, (2)

where A and B are positive constants. By using Eq.(2),
synaptic weights between the (i, m)th neuron and the ( j,
n)th neuron wim; jn and thresholds of the (i, m)th neuron θim
are defined as follows:

wim; jn = −2{A(1 − δmn)δi j + Bδmn(1 − δi j)

+
di jcmn

q
}, (3)

θim = −(A + B), (4)

where δi j is Kronecker’s delta and q is a normalization pa-
rameter. A state of the (i, m)th neuron is updated asyn-
chronously using the following equation:

xim(t + 1) = g

















N
∑

j=1

N
∑

n=1

wim; jn x jn(t) − θim

















, (5)

where g is an output function.

2.3. Hopfield Neural Network for Solving QAP with
Dynamical Noise

The method which uses the HNN has a local minimum
problem. To solve this problem, a method which adds dy-
namical noise to the HNN has already been proposed [8, 9].
An output of state the (i, m)th neuron (Eq.(6)) is redefined
as follows:

xim(t + 1) = g

















N
∑

j=1

N
∑

n=1

wim; jn x jn(t) − θim + βzim(t)

















,(6)

where zim is an additive noise and β is a weight of noise.

3. Proposed Method

3.1. Chaotic Neural Network for Solving Quadratic
Assignment Problem

As another approach of avoiding the local minima,
a method which uses chaotic dynamics produced from
a chaotic neural network (CNN)[3] have been proposed
[4, 5]. The CNN model is proposed by Aihara, Takabe
and Toyoda[3]. This neural network model can reproduce
a chaotic dynamics observed in real neural membrane.

An internal state of the (i, m)th neuron in CNN is defined
as follows:

yim(t + 1) = kyim(t) +
N
∑

j=1

N
∑

n=1

wim; jn f (y jn(t))

−α f (yim(t)) + θim(1 − k), (7)

where k is a decay parameter, α is a strength parameter of a
refractory effect, and f is an output function. As an output
function, a sigmoidal function is often used:

f (y) =
1

1 + exp(− y
ǫ
)
, (8)

where ǫ is a gradient parameter of the sigmoidal function.
Updating each neuron asynchronously, the CNN gener-

ates solutions. However, if we use outputs of the neurons,
we cannot always obtain feasible solutions, because an out-
put of the chaotic neuron takes an analog value. Then, we
use the firing decision method[4] which can always gener-
ate a feasible solution for QAP. The procedure is described
as follows:

1. Choose an index (i,m) whose internal state yim takes
the maximum value among all the neurons. Then, set
the (i,m)th neuron as to firing state, and let xim = 1.

2. Set other neurons in the ith row and the mth column
to a resting state, and let xik = 0(k , m) and xml =

0(l , i). Then, exclude neurons which have already
been selected in Steps 1 and 2.

3. Repeat Steps 1 and 2 until all states of neurons are
decided.

3.2. Chaotic Neural Network for Solving QAP with Dy-
namical Noise

We have already been proposed the method which uses
CNN and dynamical noise for solving QAP[6, 7]. An in-
ternal state of the (i,m)th neuron with dynamical noise is
defined as follows:

yim(t + 1) = kyim(t) +
N
∑

j=1

N
∑

n=1

wim; jn f (y jn(t)) − α f (yim(t))

+θim(1 − k) + βzim(t), (9)
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(a) a = 4.0
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(b) a = 3.8274

Figure 1: Time series of chaotic noise.
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Figure 2: Frequency distributions of chaotic noise.

where β is a weight of dynamical noise and zim(t) is a se-
quence of dynamical noise added to the internal state of the
(i,m)th neuron at time t. Then, we define a single iteration
as updating all neurons asyncronusly.

4. Experimental results

4.1. Performance with Respect to Weight of Noise and
Parameter of Chaotic Noise

To evaluate the performance of the proposed method
which uses chaotic neural network (CNN) with dynamical
noise, we use the benchmark problem from QAPLIB[11].
Parameters of the proposed method (Eq.(9)) are decided as
A = 0.34, B = 0.34, k = 0.87, α = 1.01, ǫ = 0.02, θ = 0.68
and q = 1100. Then, we use two kinds of dynamical noise:
white Gaussian noise whose average is zero and variance is
unity and chaotic noise. The chaotic noise is generated by
a logistic map and normalized as follows:

ẑim(t + 1) = aẑim(t)(1 − ẑim(t)), (10)

zim(t) =
ẑim − z
σz
, (11)

where a is a parameter, z is the average of ẑim(t) and σz is
the standard deviation of ẑim(t). When a = 4.0, the chaotic
noise is fully developed chaos, and when a = 3.8274, the
chaotic noise is intermittency chaos near the three period
window. In the proposed method, we use a = 4.0 and
a = 3.8247. Figure 1 shows examples of the chaotic noise
with a = 4.0 and a = 3.8274. Figure 2 shows distribu-
tion of chaotic noise with a = 4.0 and a = 3.8274. The
proposed method is applied for 3,000 iterations. Figure
3 shows results of the proposed method for Had12 when
we change β from 0 to 0.008 with intervals of 0.0005. In

Fig.3, the results are expressed by percentages of average
gaps between obtained solutions and the optimal solutions
for 50 trials. From Fig.3, adding small amount of dynami-
cal noise, the proposed method shows higher performance.
The performance of the proposed method also depends on
types of dynamicsl noise. If the chaotic noise of a = 3.8274
is injected, better solutions are obtained than other types of
dynamical noise, such as fully-developed chaos or Gaus-
sian random numbers.
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Figure 3: Percentages of average gaps between obtained
solutions and the optimal solutions for 50 trials when noise
weight β is changed for Had20.

4.2. Lyapunov exponent

4.2.1. Lyapunov exponents for the Synchronous Update

Next, we investigate the reason why the performance of
the proposed method depends on the types of dynamical
noise and a weight of dynamical noise. We calculate the
Lyapunov exponents of the CNN with dynamical noise,
with which the chaotic dynamics is quantified. To calcu-
late Lyapunov exponents, we have to calculate the Jaco-
bian matrix[10]. The Jacobian matrix of N2-dimensional
nonlinear map is described as follows:

J =
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∂y1

∂F1

∂y2
· · ·

∂F1

∂yN2

∂F2

∂y1

∂F2

∂y2
· · ·

∂F2

∂yN2

...
...

. . .
...

∂FN2

∂y1

∂FN2

∂y2
· · ·

∂FN2

∂yN2





































































, (12)

where Fk is a nonlinear map of the kth neuron and yl is an
internal state of the lth neuron. Then, the Jacobian matrix
of the CNN is calculated as follows:

∂yi j(t + 1)

∂ymn(t)
=











































wi j;mn

ǫ
f (ymn(t))(1 − f (ymn(t))),

((i j) , (mn)),

k +
(wmn;mn − α)

ǫ
f (ymn(t))(1 − f (ymn(t))),

((i j) = (mn)).

(13)
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If equations of the dynamical system are explicitly given,
we can calculate the Jacobian matrix and calculate Lya-
punov exponents with the QR decomposition[10].

4.2.2. Lyapunov exponents for the asynchronous update

When we calculate Lyapunov exponents of the asyn-
chronously updating CNN, we cannot use the same Jaco-
bian matrix, because updated neurons and un-updated neu-
rons coexist in the same iteration. Thus, we must define an
asynchronous-update version of the Jacobian matrix for the
CNN. First, we consider F

′

h as a nonlinear map for the hth
update of neurons. The Jacobian matrix when the (r, s)th
neuron is updated at the hth update is calculated as follows:

J
′

h(t) =































































wim; jn

ǫ
f (y jn(t))(1 − f (y jn(t))),

((im) , ( jn) ∩ (im) = (rs)),

k +
wim; jn − α

ǫ
f (y jn(t))(1 − f (y jn(t))),

((im) = ( jn) ∩ (im) = (rs)),
0, ((im) , ( jn) ∩ (im) , (rs)),
1, ((im) = ( jn) ∩ (im) , (rs)).

(14)

The update function of internal states for a single iteration
is represented as follows:

y(t + 1) = F(y(t)) (15)

= F
′

1F
′

2 . . . F
′

k . . .F
′

N2 (y(t)).

Thus, the Jacobian matrix for the asynchronously updating
CNN in a single iteration is defined as follows:

J = J
′

N2 J
′

N2−1 . . . J
′

k . . . J
′

2 J
′

1. (16)

4.2.3. Result

Figure 4 shows results of the maximum Lyapunov ex-
ponents and the sum of positive Lyapunov exponents of
CNN with dynamical noise for solving QAPs. In Fig.4,
we change β from 0 to 0.008 with intervals of 0.001. From
Fig.4, the maximum Lyapunov exponent does not change
even though an amount of dynamical noise is changed. The
sum of positive Lyapunov exponents decreases slightly as
an amount of noise increases.

5. Conclusions

In this paper, we analyze the effect of dynamical noise
added to the CNN when it solves QAP. We investigated the
performance of the proposed method. As a result, in the
case of an intermittency chaotic noise and a small amount
of noise, the proposed method shows higher performance.
To examine the reason why the performance of the pro-
posed method depends on a type of dynamical noise, we
calculate the Lyapunov exponents of the CNN. However,
the Lyapunov exponents show almost the same tendency
even though the type of dynamical noise is changed. Thus,
it is an important future work to investigate the reason of
good performance with other measures than the Lyapunov
exponents.
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