
  

Estimation of entropy rate for random bit generators with chaotic 
semiconductor lasers 

Takuya Mikami†, Kazutaka Kanno†, Kota Aoyama†, Atsushi Uchida†,  
Takahisa Harayama‡, Satoshi Sunada‡, Ken-ichi Arai‡, Kazuyuki Yoshimura‡, Peter Davis‡  

 
†Department of Information and Computer Sciences, Saitama University 

255 Shimo-Okubo, Sakura-ku, Saitama city, Saitama, 338-8570 Japan 
‡NTT Communication Science Laboratories, NTT Corporation 
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan  

Emails: {s10mm326, auchida}@mail.saitama-u.ac.jp 
 
Abstract– We estimate the entropy rate of a fast physical 

random bit generator using a chaotic semiconductor laser 
with intrinsic noise. The entropy is generated by the 
amplification of microscopic noise by chaotic dynamics. 
The relationship between the time for the loss of the 
memory of initial conditions and the intrinsic noise 
strength is investigated quantitatively. The entropy rate is 
evaluated from the memory time of the initial conditions 
and almost coincides with the maximum Lyapunov 
exponent of the dynamical laser system. 
 
1. Introduction 
 

Physical random processes can be used to realize non-
deterministic random number generators for use in 
information security and computations [1,2]. Random 
phenomena such as photon noise and thermal noise in 
resistors have been used for physical random number 
generators [3,4]. However, it is difficult to realize non-
deterministic generators which generate random bits at the 
communications over a Gigabit per second (Gb/s). 
Recently, fast physical random bit generators using 
chaotic semiconductor lasers have been demonstrated [5-
13] and generate random bit sequences that pass standard 
tests of randomness at rates ranging from 1 to 300 Gb/s. 
From the point of view of information security 
applications, it is important to know not only that a 
sequence does not show statistically significant deviations 
from randomness, but also that the source is non-
deterministic, in the sense that repeated operations of the 
device from the same initial state produce statistically 
independent sequences.  

In this study we present numerical analysis which 
shows how unpredictable random bits can be generated at 
fast rates in a chaotic laser system, and estimate the rate of 
generation of non-deterministic bits, which is referred to 
as the entropy rate. 
 
2. Numerical model 
 

A set of equations for a semiconductor laser with time-
delayed optical feedback from an external mirror is well 
known as the Lang-Kobayashi equations [14-16]. We 
include the gain saturation effect to reproduce a similar 

histogram of the laser intensity distribution to that 
observed in experiments [11,15]. The Lang-Kobayashi 
equations with the gain saturation effect are described as 
follows [15,16].  
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where E  is the electric field amplitude, φ  is the electric 
field phase, N  is the carrier density. NG  is the gain 
coefficient, 0N  is the carrier density at the transparency, 

( ) ( )inrrr τκ 23
2

2 /1−=  is the optical feedback strength, 2r  
is the reflectivity of the internal cavity, 3r  is the 
reflectivity of the external mirror, inτ  is the optical round-
trip time in the cavity of the semiconductor laser, pτ  is the 

photon lifetime, sτ  is the carrier lifetime, τ  is the 
external-cavity round-trip time, α  is the linewidth 
enhancement factor, J  is the injection current density, ε  
is the gain saturation coefficient, λπ=ω /2 c  is the angular 
optical frequency, c  is the speed of light, λ  is the optical 
wavelength, and D  is the noise strength. Additive white 
Gaussian noise )(tξ  and )(tη  are added in Eqs. (1) and 
(2), respectively, as intrinsic noise. The parameter values 
are set as follows: NG = 8.4×10-13 m3s-1, 0N = 1.4×1024 
m-3, pτ  = 1.927×  10-12 s, inτ = 8.0×10-12 s, sτ =2.04×10-9 

s, τ = 2.0 × 10-9 s, α = 5.0, J = 1.44 thJ ( thJ  
= sthN τ/ , thN = )/(10 pNGN τ+ ),  κ = 6.25 ns-1, λ = 
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1.537×10-6 m, and ε  = 2.5×10-23. The similarity of the 
dynamics in the numerical model and experiments has 
been confirmed. We numerically integrate the Lang-
Kobayashi equations of Eqs. (1) ~ (3) with these 
parameter values by employing the Runge-Kutta method. 
 
3. Noise amplification by chaotic dynamics 
 

We add intrinsic noise in the deterministic model of 
Eqs. (1) ~ (3) to investigate the noise amplification effect 
by chaotic dynamics. All the time series are calculated 
from the same parameter values and the same initial 
conditions, however, different noise sequences are added 
to the same chaotic trajectory after t  = 0. Figure 1 shows 
an example of three chaotic time series of the laser 
intensity ( 2)()( tEtI = ) starting from the same initial 
conditions with different additive noise sequences. It is 
shown that the three chaotic time series are almost the 
same at around t  ≈ 0, however, they start separating to 
each other due to the effect of the intrinsic noise for the 
time evolution. On the scale of this plot, the time series 
appear to start diverging after a few nanoseconds. The 
difference in the trajectories indicates the loss of the 
memory of the initial conditions due to the nonlinear 
amplification of the additive internal noise by chaotic 
dynamics. 

 

 
Figure 1 Three temporal waveforms of chaotic laser 
intensities starting from the same initial conditions when 
different noise sequences are added at time t = 0. 
 
4. Estimation of entropy rate 
 

We compute the time-dependent entropy to calculate 
the entropy rate of the generated bits as a physical random 
bit generator. First we calculate a temporal waveform of 
chaotic laser intensity. We set a threshold level to detect 

whether the laser intensity is above or below a specified 
level at fixed time intervals for extracting random bits (i.e., 
1-bit analog-to-digital conversion) [5,6,13]. The threshold 
level is pre-defined for digitizing a temporal waveform, 
and is adjusted to equalize the long-time average ratio of 
the number of 0 and 1 bits, i.e., the probability of the 
occurrence of each bit is set to 50 % as close as possible. 
Each point on the temporal waveform is compared with 
the threshold level, and bit 1 is generated when the 
sampled point is larger than the threshold level, and bit 0 
is generated otherwise. The temporal waveform is thus 
converted into a bit sequence in time. We execute this 
procedure for 310  temporal waveforms which are 
generated from the same initial conditions, but added by 
different microscopic noise sequences. We then calculate 
the probability of bit 1 and 0 at time t , and time-
dependent entropy )(tH  is estimated by the following 
equation. 
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where )(tPi  is the probability of the occurrence of bits ‘ i ’ 
( i  = 0 or 1) at the time t  for an ensemble of the time 
series with different additive noise instances. The time-
dependent entropy is also averaged over 310  different 
initial conditions.  
 

 
Figure 2  Entropy as a function of time for an ensemble of 
time series starting at exactly the same state at time t  = 0 
for different noise strengths. Solid line: noise strength of   
-25 dB, dotted line: -35dB, dashed line: -45 dB, dashed-
dotted line: -55 dB, dashed double-dotted line: -65 dB. 
The noise strengths are evaluated by the signal-to-noise 
ratio in the power spectrum of the optical intensity signal. 
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Figure 2 shows an example of the plots of bit entropy as 
a function of time for an ensemble of time series starting 
at exactly the same state at time t  = 0 for the different 
noise strengths. It can be seen that the entropy reaches ~1 
after ~10 ns for the noise strength of -25 dB, where the 
noise strength is defined as the ratio of the signal (the 
peak value of the center frequency of chaotic waveforms) 
to noise (the noise floor level) in the power spectrum of 
the optical intensity signal. This fact indicates that even if 
we know the state of the laser in the dynamical model to 
high precision at t  = 0, we are unable to predict whether 
the waveform corresponds to a bit ‘1’ or ‘0’ after the 
entropy reaches ~1. It is worth noting that there is no 
information about the initial conditions in the bit after this 
time. As shown in Fig. 2, more time is required to 
converge to 1)( ≈tH  as the noise strength is decreased. 
The time for the convergence to 1)( ≈tH  is thus 
dependent on the noise strength.  

Let us define the “memory time” mT  of the initial 
conditions as the time when the time-dependent entropy 

)(tH  reaches more than 0.995, which corresponds to the 
pass criteria of the frequency (0/1 ratio) test for the length 
of 103 bits in the NIST Special Publication 800-22 
statistical tests of randomness [17]. From Fig. 2, the 
memory times mT  are estimated as 13.0, 14.1, 15.3, 17.0, 
and 18.2 ns for the noise strengths of -25, -35, -45, -55, 
and -65 dB, respectively.  
 
 

 
 

Figure 3  Memory time as a function of the noise 
strength. The memory time mT  of the initial conditions is 
defined as the time when the time-dependent entropy 

)(tH  reaches more than 0.995.  
 
 
 

We investigate the memory time when the noise 
strength is changed continuously. Figure 3 shows the 
memory time as a function of the noise strength. The plot 
is an almost straight line on the semi-logarithmic plot, 
indicating that the memory time decreases as the noise 
strength is increased exponentially. This relationship can 
be fitted with the empirical relation as follows. 
 

( )nm SLTT 100 log10=−    (8) 
 
where mT  is the memory time, 0T  is the offset time, nS  is 
the noise strength, and L  is the slope of the straight line 
in Fig. 3. The value of L  obtained from the plot in Fig. 3 
is L  = -0.14 ns/dB. The linear slope shows that we can 
estimate the entropy rate that is independent of the noise 
strength. The entropy rate can be defined as the rate of the 
increase of the noise strength (taking the natural 
logarithm) to the increase of the memory time,  
 

( )0)(log TTSR mnee −=    (9) 
 

The value of entropy rate eR  can be obtained from Eqs. 
(8) and (9),  
 

1
10 7.1)log10/(1 −=×= nseLRe   (10) 

 
The entropy rate can be a measure of the generation speed 
of uncertainty from intrinsic noise amplification by 
chaotic dynamics. Non-deterministic bit generation can be 
guaranteed when the entropy rate is larger than the bit 
generation rate. Therefore, these results show that non-
deterministic bit generation at the maximum speed of 1.7 
Gb/s can be achieved by using a chaotic semiconductor 
laser with 1-bit analog-to-digital conversion. 
 
5. Comparison of entropy rate with maximum 

Lyapunov exponent and KS entropy 
 

To investigate the influence of laser parameter values 
on the entropy rate, we calculate the maximum Lyapunov 
exponent of the chaotic semiconductor laser with the same 
parameter values by using the linear stability analysis 
[18,19]. The maximum Lyapunov exponent is obtained as 
a rate of the exponential growth of the norm of linearized 
variables in the logarithmic scale. We evaluate the entropy 
rate and the maximum Lyapunov exponent at different 
chaotic states by changing the optical feedback strength 
κ . Figure 4 shows the entropy rate eR  and the maximum 
Lyapunov exponent as a function of the optical feedback 
strength κ . It is worth noting that the entropy rate almost 
coincides with the maximum Lyapunov exponent for 
different chaotic states. This result indicates that the 
entropy rate defined as Eq. (9) can be estimated from the 
maximum Lyapunov exponent of the chaotic 
semiconductor laser. Therefore, the maximum Lyapunov 
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exponent can be a good measure to design random bit 
generators with large entropy rate. 

 
 

 
 

Figure 4  Entropy rate eR  (solid curve) and the maximum 
Lyapunov exponent (dotted curve) as a function of the 
optical feedback strength κ .  
 
 
6. Conclusion 
 

We have evaluated the entropy rate of a random bit 
generator using a chaotic semiconductor laser with 
intrinsic noise, and shown that bits are non-deterministic 
if extracted at rates slower than the entropy rate due to the 
nonlinear amplification of microscopic noise by chaotic 
dynamics. Using particular parameter values 
corresponding to semiconductor laser implementations, 
we show that non-deterministic bits can be generated in 
the gigabit per second regime. The persistent uncertainty 
in the state of the laser can be guaranteed because of the 
property that the rate of the generation of entropy (due to 
the amplification of intrinsic noise by chaotic dynamics) is 
larger than the bit generation rate. The technique used for 
the evaluation of the entropy rate can be useful for 
designing fast physical random bit generators with non-
deterministic bits. 
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