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Abstract—We compare the information transfer
measured by the symbolic entropy transfer (STE) and
a new directionality indicator based on the mutual in-
formation of transcripts (TMI), using brain recording
data, specifically local field potentials of the visual cor-
tex and thalamus during spontaneous activity. The
comparison shows the adequacy of TMI, the interest-
ing point being that TMI has one dimension less than
STE.

1. Introduction

The concept of transcript can be defined in any sym-
bolic representation of time series whose symbols build
an algebraic group. In particular, the symbolic repre-
sentation in ordinal time series analysis is implemented
with permutations of L elements (called ordinal pat-
terns of length L), the algebraic representation group
thus being the symmetric group of order L. Based on
ordinal patterns and their corresponding transcripts,
one can then define some information directionality
indicators via conditional mutual informations with a
varying number of conditioning variables. These in-
dicators have the advantage of containing one condi-
tioning variable less than their standard counterparts,
e.g., symbolic transfer entropy and momentary sorting
information transfer. This dimensional reduction can
make a difference in time series analysis of real world
data just because they are usually short in supply.

Transcripts were introduced in [6] for characterizing
the synchronization of two coupled, chaotic oscillators.
In [1] they were used to define two complexity indices
for coupled time series. Their basic properties were
studied in [7] and [4]. The dimensional reduction of
conditional mutual informations was proved in [8] (see
below) and generalized in [4]. These results were com-
municated in NOLTA 2012 [2] and NOLTA 2013 [3] as
they were obtained.

The present communication is a follow-up of [2] and
[3]. Its scope is to discuss the application of transcript-
based mutual information as an information direction-
ality indicator to real time series. Specifically, the data
are local field potentials measured at the visual cortex

and thalamus during spontaneous activity.

2. Ordinal patterns and transcripts

Suppose that {z;}72; is a sequence whose ele-
ments (entries, symbols,...) x; belong to a set (state
space, alphabet,...) endowed with a total ordering
‘<’. In practice {z;} is obtained by sampling an ana-
log signal. Let T' > 1 be a delay time. We say
that a length-L, time delay block (vector, window,...)
vr,0(2¢) = (T4, ey, oo, Toy(—1)7) defines the ordinal
(L-)pattern m = {mg, ..., w,—1) if

(1)

where in case z; = x;, we agree to set x; < x; if, say,
1 < j. In nonlinear time series analysis, L is called the
embedding dimension.

Alternatively we also say that the block vp () is
of type , or that 7 is realized by vy 1 (z;), and write
m = o(vy,(x;)). Therefore, an ordinal L-pattern (or
ordinal patterns of length L) is nothing else but a per-
mutation of the integer numbers 0, 1,..., L — 1 showing
the ranking (according to their size) of the elements
Tty T4t Ts -+ Ty (L—1)T> Where ¢ is arbitrary and L > 2.
Specifically, m = (o, ..., 7,—1) may be identified with
the permutation i +— m;, 0 <i < L — 1.

The set of ordinal L-patterns will be denoted by Sy..
This set can be promoted to a group of order L!, called
the symmetric group of degree L, if equipped with the
product of permutations,

TttmoT < Tidm T < oo < Ttgmp T

(2)

<7T0, ...,7TL_1> <0’0, ...,O'L_1>

(g s Onp_y)

o =

the inverse element being given by
Tr_l = O(ﬂ-Oa "'aﬂ-L—l)v
and the unity by the identity permutation,

id=1(0,1,..,L—1).
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One way of exploiting the group-theoretical struc-
ture (2)-(4) of the ordinal patterns is the following.
Given «,3 € Sy there always exists a unique 7 =
7(a, B) € Sp, called transcript from the source pat-
tern a to the target pattern (3, such that

Ta = f3, (5)

where, according to (2), Ta = (@, Qryyeesrp ).
When the source and target patterns are important
for the discussion, we generally write 7, g. It follows
from (5) that 754 = (Ta.5) "'

As the source pattern « and the target pattern
B vary over Sy, their transcript varies according to
7(a, ) = Boa~!. Note that given 7 € Sy, there exist
L! pairs (o, 8) € S, X S, such that 7 is the transcript
from « to f.

All this can be generalized to N > 2 coupled time

series. In this case we write aq,..., ay for the ran-
dom ordinal L-patterns obtained from the time series
{z}}, ..., {zN}, respectively, and 71 2, ..., Tv_1,n for

the corresponding transcripts 7o, as»-s Tan_1,an- LhE
coupling complexity indexr among the random ordinal

L-patterns ay,..., an, denoted by C(ayq, ..., an), is de-
fined as [1, 7]

Clag,...,ay) = i H(ay) — H(ag,...,an)

+H (1,2, s TN-1,N), (6)

where H(X1, ..., X,,) is the (Shannon) entropy of the
random variables X1, ..., X,,. It can be proved [7, 4]
that

C(Ozl,...,aN) :1%1713;1]\7[(04”;7'1,2,...,TN_LN), (7)
where

I(X1; Xp) = H(X1) + H(X2) — H(X1, X3)  (8)

is the mutual information between the random vari-
ables X; and X5. Note that C(ay,...,an) > 0,
and that it depends on L. It can be proved that
C(aq, ..., an) is invariant under permutations of its ar-
guments. For this and other properties of the coupling
complexity index, see [7, 4].

3. Symbolic transfer entropy and transcript
mutual information

The following theorem was proved in [8].

Theorem 1. Let «aq,as,8 be random ordinal L-

patterns. If (i)
min{H (ay), H(az)} > H(S) (9)

and (ii)
C(Oél, 2, /6) = Oa

then

(11)

Note that (11) equates a conditional mutual infor-
mation (with three variables and (L!)? possible values)
to an unconditioned mutual information (with two
variables and (L!)? possible values) thanks to the use
of transcripts. This dimensional reduction can make a
difference in symbolic time series analysis if the data
sequences are short, as often happens in practice. The
Eq. (11) was generalized to multi-information func-
tions (Studeny 1999) conditioned on an arbitrary num-
ber of random ordinal patterns in [4].

The symbolic transfer entropy is a conditional mu-
tual information of the form considered in Theorem 1.
Perhaps for its simplicity, symbolic transfer entropy is
one of the most popular information directionality in-
dices used with ordinal symbolic representations. Let
¢ and n be two Sp-valued random variables obtained
from two coupled time series {x;}2, and {y;}2, , re-
spectively, and let £y the Sp-valued random variable
obtained from {z;44}2; , where A > 1. The symbolic
transfer entropy from System 2 to System 1 is defined
[10] as

I(on;a2(B) = I(Tal,ﬁ% Tazﬁ)'

T3 = 1(Eninle).
Ts ., > 0 for some A if System 2 drives System 1.

Replace a; by &z, as by 7, and § by £ in Theorems 1
and 2 to obtain the following result.

Corollary 1. [8] If H(§) < H(n) and
C(fA» m, 5) =0

(12)

(13)

then
T2S~>1 = I(TEA-,E; Tn,&)' (14)
Analogously, the symbolic transfer entropy from
System 1 to System 2, is defined as

Tls—>2 =1I(nas€&n) .

In this case, T ., > 0 for some A if System 1 drives
System 2. Theorems 1 and 2 yield this time the fol-
lowing result.

Corollary 2. [8] If H(§) > H(n) and

C(na,&m) =0 (15)

then
S .
Ty o = I(Tyu 3 Tem)- (16)
To detect the net information flow between the Sys-
tems 1 and 2 one can use, e.g., the difference

ASTE (2—1) =TS, —-TS, (17)

so that ATy | > 0 indicates a net information transfer
from System 2 to System 1, weil ATy ; < 0 indicates
the contrary.
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In sum, Corollaries 1 and 2 spell out that the TMI

if H(¢) < H(n)
if H(¢) = H(n)

I(7ey 65 Tn.¢)

18
[(Tnmn;T&n) (18)

may be used as information directionality indicators if
the condition (13) in the first case, and the condition
(15) in the second case, is satisfied (at least, approxi-
mately). In particular, if H(£) ~ H(n) holds then one
can use, analogously to (17),

ATMI(2 — 1) == I(re, e Te) — LTy Tem), (19)

or
I<T€A7€; 7—7775) - I(T77Aﬂ7; TEJ})
I(7ey 63 Tn6) + L(Typ i Tem)

under the corresponding provisos on coupling complex-
ity coefficients. One expects H(§) ~ H(n) at least
if the coupling is strong enough, or if both systems
have a similar entropy and their coupling is weak. As
commented before, the lesser dimensionality of TMI
as compared to STE might prevent undersampling in
short data set and improves the statistical significance
of the results in any case.

Numerical simulations show [8, 4] that the condi-
tions on the coupling complexity indices can be gener-
ally achieved by taking the delay time T large enough.
This being the case, the question arises whether TMI,
in the appropriate form according to the entropy con-
dition, may be used as information directionality indi-
cator even if the pertinent condition on the coupling
complexity coefficient(s) does not hold. This question
was numerically tackled in [8], and the answer was
positive. We address the same question with real data
in the next section. Specifically, we study the local
potentials of the cortex and thalamus during sponta-
neous activity. See [5] for an interesting application of
transfer entropy to brain waves.

(20)

4. Applications to biomedical time series

In this section we apply the measurement of in-
formation flow directionality to data obtained during
spontaneous oscillatory activity in the recurrently con-
nected thalamocortical loop. Such recordings consist
of simultaneous local field potentials obtained from the
visual thalamus and different layers of the visual cor-
tex. Thalamus and cortical networks can be consid-
ered as two independent oscillators reciprocally con-
nected. There is a debate regarding the role of the
thalamic activity on the initiation of slow oscillatory
waves, a problem that we will approached with the use
of information directionality indicators. Furthermore,
laminar recordings should allow us to explore the dom-
inant information flow during the different stages of
cortical rhythmic activity and to compare these results

to the underlying network connectivity. The data were
obtained as in [9]. The time series are 3,968,400 points
long, corresponding to 400 sec of recording at a sam-
pling frequency of 9921 Hz.

As for the parameter chosen to compute the sym-
bolic transfer entropy and the transcript mutual infor-
mation, L = 4 and T' = 1050/9921 = 0.106 sec (about
100 times the sampling time). All directionality in-
dicators are given in units of bit (i.e., logarithms are
taken to base 2).

To illustrate the results obtained, let System 1
(variable &) be the visual thalamus and let System
2 (variable 7)) consists of the infragranular layer V
of the visual cortex. The entropy of these two sys-
tems is H(§) = 4.27 £ 0.11 and H(n) = 4.41 + 0.08,
therefore we may use the transcript-based indicator
ATMI(2 — 1), Eq. (19), to measure the net informa-
tion transfer from System 2 to System 1. Table I below
lists the average over 5 registers of ATMI(2 — 1)
for A = 0.02,0.04,0,06,0.08,0.10 sec, i.e., for time
shifts smaller than the delay time 7' ~ 0.10 sec. As
benchmark we take the symbolic directionality indi-
cator ASTE(2 — 1), Eq. (17) with the same time
shifts. Table I lists as well the corresponding average
of ASTE(2 — 1) for comparison. The error margins
are the standard deviation over 5 subjects.

| A [ATMI2—1) [ ASTE(2—1) |

0.02 0.14 £0.02 0.07 £0.01

0.04 0.17 +£0.02 0.06 +0.02

0.06 0.16 +0.03 0.04 +0.03

0.08 0.15 +0.04 0.02 £0.02

0.10 0.14 £0.05 0.02 £0.03
Table I

Comparison of ATMI(2 — 1) with ASTE(2 — 1)
in Table I shows a satisfactory coincidence of both in-
dicators in the envisaged case of coupled systems with
similar entropies. Note that the information direction
has to do with the sign of the indicators, not with their
magnitude. Bearing this in mind, the neurological im-
plication from Table I with either indicator is that the
layer V of the visual cortex leads the thalamus during
spontaneous activity.

A similar coincidence was found with data from
other layers of the visual cortex. This confirms the
suitability of the new indicator (19) and (20) with real
data as well.
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