
Chaotic Search based on the Ejection Chain Method
for Traveling Salesman Problems

Shun Motohashi†, Takafumi Matsuura† and Tohru Ikeguchi†

†Graduate School of Science and Engineering, Saitama University
255 Shimo-ohkubo, Sakura-ku, Saitama, 338-8570 Japan

Email: motohashi@nls.ics.saitama-u.ac.jp, takafumi@nls.ics.saitama-u.ac.jp, tohru@ics.saitama-u.ac.jp

Abstract—In the real world, we are often asked to solve
difficult problems of combinatorial optimization: for ex-
ample, vehicle routing, computer wiring, circuit drilling,
scheduling, and so on. To solve these problems, the travel-
ing salesman problem (TSP) has been studied widely. Be-
cause the TSP belongs to a class of NP-hard, it is required
to develop an effective approximate algorithm for obtaining
near optimal solutions in a reasonable time frame. As an
approximate algorithm, a method using chaotic dynamics
shows good performance. In this method, chaotic dynam-
ics controls local search methods to avoid local minima. In
this paper, we propose a new chaotic search method using
the stem-and-cycle structure for solving TSPs. Evaluating
performance, we show that the new chaotic search method
is very effective for solving TSPs.

1. Introduction

The traveling salesman problem (TSP) is one of the most
typical combinatorial optimization problems. The TSP is
described as follows: given a set of n cities and distances
di j between cities i and j, find an optimal solution, or a
shortest-length tour. Thus, the goal of the TSP is to find
a permutation σ of the cities that minimizes the following
quantity:

n−1∑
k=1

dσ(k)σ(k+1) + dσ(n)σ(1), (1)

where σ(k) is the kth city in a tour. If di j = d ji for all i
and j, the TSP is symmetric, otherwise asymmetric. In this
paper, we deal with the symmetric TSP.

Because the TSP belongs to a class of NP-hard, it is al-
most impossible to find optimal solutions in a reasonable
time frame. Thus, it is required an effective approximate
algorithm for finding near optimal solutions in a reason-
able time frame. As such approximate algorithms, several
heuristic algorithms have already been proposed: for ex-
ample, the 2-opt algorithm, the 3-opt algorithm, the Lin-
Kernighan algorithm[1], and so on. These algorithms are
called the local search method whose basic mechanism is
to search better solutions from near neighbors of a current
solution. For example, the 2-opt algorithm, which is one
of the simplest local search methods, is described as fol-
lows: two links are deleted from a current tour, and other

two links are added in such a way that a length of a new
tour is shorter than that of the current tour (Fig. 1). Such
exchanges of links continue until no further shorter tours
can be found.

i

a(j) a(i)

j i

a(j) a(i)

j

Figure 1: An example of the 2-opt algorithm. In this figure,
a(i) is the next city of the city i in a current tour. Two links
(i, a(i)) and (j, a(j)) are deleted from the current tour, then
two links (i, j) and (a(i), a(j)) are added to obtain a shorter
tour.

However, it is almost impossible to obtain the optimal
solution with these local search methods, because the lo-
cal search methods get trapped into local minima. Thus, to
avoid such local minima, various meta-heuristic strategies
have been proposed. For example, tabu search[2], simu-
lated annealing[3], genetic algorithm[4], chaotic search [6–
10], and so on.

Among them, the chaotic search is one of effective and
practical strategies to avoid local minima. We have al-
ready proposed effective algorithms for solving TSP using
the chaotic search[6–10]. In the chaotic search method,
to avoid local minima, local search methods are driven
by chaotic neurodynamics. To realize the chaotic search
method, a chaotic neuron model proposed by Aihara, Tak-
abe and Toyoda[5] is introduced. This model can reproduce
refractoriness, one of important properties which real nerve
cells have. In the proposed methodologies, the refractori-
ness plays a central role of avoiding local minima.

First, the chaotic search method using the 2-opt algo-
rithm was proposed[6, 7]. Although the 2-opt algorithm is
the simplest local search method, this chaotic method[6, 7]
shows good performance. It is also shown that this chaotic
search method has higher performance than the tabu search
method[2].

Next, a chaotic search method was proposed using a lo-

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 304 -

cal search method with higher performance than the 2-opt
algorithm, the adaptive k-opt algorithm[8]. The adaptive k-
opt algorithm changes the number of exchanged links adap-
tively. This method[8] shows higher performance than the
chaotic search method using the 2-opt algorithm[6, 7].

Then, to extend this idea, we have proposed a
chaotic search method[9] based on the Lin-Kernighan
algorithm[1]. The Lin-Kernighan algorithm is one of the
most effective local search methods, because it changes the
number of exchanged links dynamically depending on cur-
rent states. The Lin-Kernighan algorithm has higher perfor-
mance than the adaptive k-opt algorithm because the Lin-
Kernighan algorithm explores a searching space widely. As
a result, this chaotic method[9] showed the highest perfor-
mance in all the chaotic search methods[6–9].

The stem-and-cycle(S&C) ejection chain method[11,
12] is also a variable depth search method which changes
the number of exchanged links adaptively. It is reported
that the S&C ejection chain method can explore a searching
space widely than the Lin-Kernighan algorithm. Then, in
this paper, we propose a new chaotic search method based
on the S&C ejection chain method. As a result, the pro-
posed method shows higher performance than the conven-
tional chaotic search method based on the Lin-Kernighan
algorithm[9].

2. Proposed method

2.1. Stem-and-cycle ejection chain method

The stem-and-cycle(S&C) structure[11, 12] is con-
structed from a path (vt, . . . , vr) called stem and a cycle
(vr, vs1 , . . . , vs2 , vr) called cycle (Fig. 2). The vertex vr

which belongs to both stem and cycle is called root. The
two adjacent vertices of the root on the cycle vs1 and vs2 are
called subroots. The vertex vt is called tip of the stem.

The S&C ejection chain method has two types of im-
provements: a stem ejection and a cycle ejection. The first
improvement is the stem ejection described as follows (Fig.
3 (a)): add a link (vt, vp), where vp belongs to the stem.
Next, delete a link (vp, vq), where vq is the adjacent vertex
of vp and on the subpath (vt, . . . , vp). Then, the vertex vq

is a new tip. The second improvement is the cycle ejection
described as follows (Fig. 3 (b)): add a link (vt, vp), where
vp belongs to the cycle. Next, delete a link (vp, vq), where
vq is one of the adjacent vertices of vp. Then, the vertex vq

is a new tip.
The structure obtained by the ejection chain improve-

ment does not offer a feasible solution, or a tour. Thus, it is
required to generate a feasible solution from the S&C struc-
ture. Such trial solutions are generated as follows (Fig. 4):
add a link (vt, vs), where vs is the subroots. Next, delete a
link (vr, vs).

In the proposed method, the implementation of the S&C
ejection chain method is the same as the Lin-Kernighan
algorithm. Namely, the proposed method searches better

solutions by repeating the ejection improvements. If a cur-
rent solution is worse than the best solution in the previ-
ous searches, the search is stopped. Thus, the proposed
method is difference from the original algorithm in Ref.
[12] because the depth of the search is decided depending
on solution states. The procedure of the S&C ejection chain
method of the proposed method is described below.

1. Let G∗ = 0 and m = 1. Here, G∗ is a value of the
best improvement in the previous searches, and m is
the number of depth of this search.

2. To construct a S&C structure, choose an initial tip ver-
tex vt from an initial tour T .

3. Choose a root vertex vr from neighbors of p(vt) so
that an improvement value d(vt, p(vt)) − d(p(vt), vr)
is maximum. Here, p(v) is the previous vertex of v,
and d(v1, v2) is a distance between vertices v1 and v2.
Next, delete a link (p(vt), vt), and add a link (p(vt), vr)
to generate the S&C structure from a tour. Then, let
e0 = d(vt, p(vt)) − d(p(vt), vr).

4. Repeat the ejection improvements by the following
steps (a)-(e). If such an improvement does not exist,
go to Step 5.

(a) Choose vp and vq to satisfy the following condi-
tions:

i. vp is a neighbor vertex of vt.
ii. A link (vt, vp) is not previously deleted.

iii. A link (vp, vq) is not previously added.
iv. An ejection value em at the depth m is max-

imum, where em is calculated by em =

d(vp, vq) − d(vt, vp).

(b) Add a link (vt, vp), and delete a link (vp, vq).

(c) Let T ′ be a tour constructed by trial exchanges.
If f (T)− f (T ′) > G∗, set G∗ = f (T)− f (T ′) and
let T ∗ = T ′, where f (T) is a length of the tour T
and T ∗ is the tour to achieve G∗.

(d) If G < G∗, go to Step 5, and G =
m∑

i=0

ei.

(e) Let m increase by one, and set vq to a new tip vt.

5. If G∗ > 0, construct a new tour T ∗.

2.2. Chaotic search method

In the proposed method, we drive the stem-and-cycle
(S&C) ejection chain method by chaotic neurodynamics.
To generate chaotic neurodynamics, we use a chaotic neu-
ral network constructed by chaotic neurons[5]. The number
of chaotic neurons is the same as the number of cities, and
each neuron is assigned to each city. If the chaotic neuron
fires, the S&C ejection chain method for the corresponding
city is executed.

- 305 -

vt

vr

vs1
vs2

Figure 2: An example of S&C structure. A path (vt, . . . , vr)
is the stem and a cycle (vr, vs1 , . . . , vs2 , vr) is the cycle. vr is
the root, vs1 , vs2 are the subroots and vt is the tip.

vp

vq

vt

(a) Stem ejection

vt

vq

vp

vq

(b) Cycle ejection

Figure 3: Examples of S&C ejection improvements. Red
lines represent added links, and blue dotted lines represent
deleted links.

vt

vr

vs1

(a)

vt

vr

vs2

(b)

Figure 4: Examples of trial solutions. Red lines represent
added links, and blue dotted lines represent deleted links.

An internal state of the chaotic neuron is constructed by
a gain effect and a refractory effect. First, the gain effect is
described as follows:

ξi(t + 1) = max
j
{β(t)∆i j(t) + ζ j(t)}, (2)

β(t + 1) = β(t) +
q

∆(t)
, (3)

∆(t) =
1
n

n∑
i=1

|∆i j(t)|, (4)

where β(t) is a scaling parameter of the gain effect at time
t (β(t) > 0). This parameter increases with time t. If the
value of β(t) gradually increases, a searching space is in-
creasingly limited as the simulated annealing[3]. ∆i j(t) is
defined as a difference of a length between a current tour

and a new tour, or ∆i j(t) = D0(t) − Di j(t), where D0(t) is a
length of the current tour at time t, and Di j(t) is that of the
new tour obtained by the S&C ejection chain method which
links cities i and j, where i and j are vt and vp at m = 1 of
the S&C procedure, respectively. ζ j(t) is a refractory effect
of the city j at time t.

To obtain the same range of ξi(t) for all instances, the
scaling parameter β(t) is adjusted by ∆i j(t) (Eq. (3)), be-
cause the range of ∆i j(t) depends on each instance. In Eq.
(3), q is a scaling parameter of the annealing effect. In Eq.
(4), n is the number of neurons. If the length of the new
tour is shorter than the current tour (∆i j(t) > 0), the value
of the gain effect becomes positive. Then, the gain effect
encourages the chaotic neuron to fire.

Next, the refractory effect is described as follows:

ζi(t + 1) = −α
s−1∑
d=0

kd
r xi(t − d) + θ, (5)

where α is a scaling parameter of the refractory effect (α >
0); kr is a decay parameter of the refractory effect (0 < kr <
1); s is a temporal period for memorizing past outputs; xi(t)
is an output of the ith neuron at time t; θ is a threshold
value. If a neuron has fired for the past s steps, Eq. (5)
tends to be negative. Namely, the refractory effect inhibits
the neuron from firing for a while. In Eq. (5), if s − 1 =
t, it means that the neuron memorizes its all history from
t = 0. If we use Eq. (5) directly, it needs much amount of
memory to memorize its all history. However, Eq. (5) can
be transformed into the following simple one-dimensional
difference equation:

ζi(t + 1) = krζi(t) − αxi(t) + (1 − kr)θ. (6)

Then, the output of the ith neuron is defined as follows:

xi(t + 1) = f (ξi(t + 1) + ζi(t + 1)) , (7)

where f (y) = 1/(1+e−y/ε). If xi(t+1) ≥ 1/2, the ith neuron
fires at time t+1 and the S&C ejection chain method which
links the cities i and j is executed. Each neuron is updated
asynchronously.

To solve an n-city TSP, the procedure of a single iteration
in the proposed method is shown below.

1. Let i = 1.

2. To calculate the gain effect of the ith neuron (Eq. (2)),
select a city j which maximizes the gain effect from
the neighbor cities of i.

3. Calculate the output of the ith neuron (Eq. (7)).

4. If xi(t + 1) ≥ 1/2, the ith neuron fires, then the S&C
ejection chain method which links cities i and j is ex-
ecuted.

5. If i < n, let i increase by one and go to Step 2. Other-
wise finish this iteration.

- 306 -

3. Results

To evaluate the performance of the proposed method, we
use the benchmark problems of TSPLIB[13]. We compare
the proposed method with the conventional chaotic search
method based on the Lin-Kernighan algorithm[9]. In these
methods, initial solutions are constructed by the nearest
neighbor method. Parameters of the proposed method
β(0), α, kr, θ, q and ε are set to 0, 1.0, 0.5, 1.0, 0.060 and
0.002, respectively. These methods are applied for 200 it-
erations. To reduce computational costs, we use two can-
didate lists: 10 nearest neighbors (10NN) and 8 quadrant
neighbors (8QN). In the 10NN, the 10 nearest cities for
each city are added in the candidate list. In the 8QN, the
2 nearest cities are added from each of the four quadrants
for each city in the candidate list. These candidate lists are
used when we decide which link is added: for example,
Step 4(a) of the stem-and-cycle ejection chain method of
Sec. 2.1 and Step 2 of the chaotic search method of Sec.
2.2.

Table 1 summarizes results of the proposed method (CS-
S&C) and the conventional chaotic search method based
on the Lin-Kernighan algorithm (CS-LK). In these meth-
ods, the obtained best solutions are further improved by
its local search method (LS) until no further improvements
are found. In other words, in the chaotic search method
based on the Lin-Kernighan algorithm, the Lin-Kernighan
algorithm is applied as the local search method. In Table
1, the results are expressed by percentages of average gaps
between obtained solutions and the optimal solutions.

From Table 1, using 8QN, the proposed method shows
higher performance than the conventional chaotic search
method with the local search method for all instances.
However, using 10NN, the proposed method shows worth
performance than the conventional chaotic search method
for rl5915 and rl11849.

Table 1: The results of the conventional chaotic search
method based on the Lin-Kernighan algorithm without the
local search method (CS-LK), that with the local search
method (LS), the proposed method without the local search
method (CS-S&C) and that with the local search method
(LS). CL represents the candidate lists (10NN and 8QN).

CS-LK[9] CS-S&C

Instance CL w/o LS w/ LS w/o LS w/ LS

pcb1173 10NN 0.759 0.689 0.497 0.452
8QN 0.855 0.785 0.529 0.487

pr2392 10NN 0.807 0.763 0.676 0.647
8QN 0.882 0.832 0.795 0.756

rl5915 10NN 1.011 0.968 1.354 1.334
8QN 0.859 0.780 0.673 0.651

rl11849 10NN 0.890 0.841 0.995 0.965
8QN 0.784 0.707 0.678 0.646

4. Conclusion

In this paper, we propose a new chaotic search method
using the stem-and-cycle structure. As a result, the pro-
posed method shows higher performance than the conven-
tional chaotic search method based on the Lin-Kernighan
algorithm[9]. In the future works, we will improve the per-
formance of the proposed method. Moreover, we will de-
velop a new parameter tuning method and a different search
method.

Acknowledgement

The research of T.I. is partially supported by Grant-in-
Aid for Scientific Research (B) (No. 20300085) from the
JSPS.

References

[1] S. Lin and B. Kernighan, Operations Research, 21,
pp.498–516, 1973.

[2] F. Glover, ORSA J. Computing, 1, pp.190–206, 1989.

[3] S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi, Sci-
ence, 220, pp.671–680, 1983.

[4] J.H. Holland, Adaptation in Natural and Artificial
Systems, The University of Michigan Press, 1975,
and MIT Press, 1992.

[5] K. Aihara, T. Takabe and M. Toyoda, Physics Letters
A, 144, pp.333–340, 1990.

[6] M.Hasegawa, T. Ikeguchi and K. Aihara, Physical Re-
view Letters, 79, pp.2344–2347, 1997.

[7] M. Hasegawa, T. Ikeguchi and K. Aihara, Neural Net-
works, 15, pp.271–283, 2002.

[8] M. Hasegawa, T. Ikeguchi and K. Aihara, Technical
Report of IEICE, 101, pp.25–32, 2001.

[9] S. Motohashi, T. Matsuura and T. Ikeguchi, Proceed-
ings of International Symposium on Nonlinear Theory
and its Applications, 21, pp.144–147, 2008.

[10] S. Motohashi, T. Matsuura and T. Ikeguchi, to appear
in Proceedings of International Conference on Artifi-
cial Neural Networks (LNCS), 2009.

[11] F. Glover, Computer Science and Operations Re-
search, pp. 449–509, 1992.

[12] C. Rego, European Journal of Operational Research,
106, pp. 522–538, 1998.

[13] http://www.iwr.uni-heidelberg.de/groups/
comopt/software/TSPLIB95/

- 307 -

	Navigation page
	Session at a glance
	Technical program

