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Abstract—An asymmetric Traveling Salesman Problem
is one in which the costs for travel between one city and an-
other are not symmetric. We propose a method for solving
such problems based on previous work by Hasegawa ef al.
It uses a chaotic neural network and tabu search; block shift
operations and 2-opt exchange are used as exchange meth-
ods. The proposed method obtains better solutions with a
shorter computational time than the method we previously
proposed.

1. Introduction

The Traveling Salesman Problem (TSP) is a famous NP-
hard problem. It is a combinatorial optimization problem
which appears quite frequently in various fields such as
transit and control [3]. The TSP suffers from combinato-
rial explosion: the number of feasible solutions increases
as "Y' a5 the number of cities, n, increases[3, 5]. In
other words, if there are a large number of cities, it is diffi-
cult to obtain a good solution to this problem using simple
techniques such as the round robin method[5].

Symmetric TSPs have been studied by many researchers
because assuming symmetry reduces the computational
cost of solving the problem. However, in everyday prob-
lems of this type, it is rare that the costs are symmetric.
Therefore, there are demands for dealing with asymmet-
ric cost problems [4]; however, thus far, asymmetric TSPs
have not been extensively studied.

This paper is organized as follows. Section 2 intro-
duces the asymmetric TSP. The method for solving TSPs
by Hasegawa et al., on which our proposed method is
based, is described in Section 3. In Section 4, we describe
the proposed method, and the results of some numerical ex-
periments are given in Section 5. Lastly, we present some
conclusions.

2. Asymmetric traveling salesman problems

The TSP is an optimization problem in which the goal is
to determine the minimum-cost tour around n cities, visit-
ing each city only once [4]. For an n-city problem, the set
of the cities is

V={vi,v2, - vn} . (1

A tour o specifies the order in which these cities are visited.
The total cost f(o) of a tour o can be evaluated from the
costs for travel from city j to city ¢, d;;(v;, v; € V).

n—1

Jrsp(o) = Z dok),0(k+1) T do(n),o(1) ()
k=1

The goal of the TSP is to minimize the cost in Eq. (2). The
nomenclature for TSPs used in this paper is summarized in
Table 1.

Table 1: Nomenclature for TSP

d;; . Cost to travel from city ¢ to city j
frsp (o) Total cost of a tour

o . The order of cities visited in a tour
\%4 . Set of cities to visit

n . Number of the cities

Uim, Internal state of the neuron im
Oim . Threshold of the neuron im

Tim Output of the neuron im

Synaptic weight from the neuron jn
to the neuron im

Wim,jn

A TSP is asymmetric when the cost of travel between
two given cities is not symmetric, that is, d;; # dj;. In
this paper, we do not include cases in which two cities are
connected only in one direction.

3. Solving the n-city TSP with n neurons [1]

The proposed method is based on the method of
Hasegawa et al. which uses a chaotic neural network with
tabu search. A feature of this method is that the number of
neurons used is equal to the number of cities. We give an
outline of the method of Hasegawa ef al. in this section.

3.1. Coding of networks

The updating of the internal state of each neuron is done
using the following set of equations.
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flx) = Tree 3)

gi(t—f—l) = IIljaX{Cj(t—‘rl)—FﬁA”(t)} (4)
N

mt+1) = WY ap(t)+W (5)
k=1
s—1

Git+1) = —a) kla(t—d) +96 (6)
d=0

zi(t+1)=f(&E+D) +mt+ 1)+ G(E+1)  (7)

If z;(t + 1) > 1, city i is connected to the city j that
gives the maximum in Eq. (4) using 2-opt exchanges. The
nomenclature for neural networks used in this paper is sum-

marized in Table 2.

Table 2: Nomenclature for networks

k. Decay parameter of the gain effect

@ Scaling parameter of the tabu effect
I6] Scaling parameter of the gain effect
Ay; : Gain of the objective function value

offered by the 2-opt exchange which
links citied 4 and j.

Positive biases

Tabu list size

3.2. Tabu search

Tabu search[6] is a technique to prevent the network state
being trapped at local minimum and periodically repeating
the same tour. It works by temporarily removing a city
and its links from the list of candidates for spot exchange.
Hasegawa’s method has lists of tabus. One of these is a
tabu applied to the city that is already selected for spot ex-
changes. This tabu list has a queue structure. That is, when
the number of the cities in the tabu list becomes larger than
the size of the list, the oldest city in the list returns to being
a spot exchange candidate.

3.3. 2-opt exchange

Two-opt exchange is a basic city exchange method for
symmetric TSPs in which any two cities exchange their po-
sition in the tour. In effect, two links are cut and two new
links are created. An example of 2-opt exchange is shown
in Figure. 1.

4. Proposed method

4.1. Overview

We propose a method that is a modification of
Hasegawa’s method described in section 3. Although the
proposed method uses the same network and the same al-
gorithm, it differs through the use of two exchange methods

before after
a
a(j) i
f b
a(i) Jj
e c
d

Tour: a-b-c-d-e-f

Tour: a-b-e-d-c-f

Figure 1: An example of 2-opt exchange: cities c and e are
swapped.

selected with a fixed probability. The two exchange meth-
ods are block shift operations and 2-opt exchange. The pro-
posed method also uses two search modes: a bidirectional
search and an unidirectional one.

4.2. Block shift operations

The 2-opt exchange is the fundamental city exchange
method for solving TSPs. When a 2-opt exchange is ex-
ecuted, the direction of a part of the tour is reversed by the
city exchange. In symmetric TSPs, this reversal does not
alter the cost of the tour. However, in an asymmetric TSP,
the 2-opt exchange may cause the cost to rise. To over-
come this disadvantage of the 2-opt exchange in asymmet-
ric TSPs, the block shift operation has been proposed [2].
This method considers several cities as a BLOCK, and the
whole BLOCK is exchanged with another city. During the
exchange, the order of the cities in the BLOCK is main-
tained. We show an example of a block shift operation in
Figure. 2. Although a 2-opt exchange could be viewed as a
type of block shift operation, we use the term “block shift
operation” in this paper only when one of the two sets of
cities being exchanged has more than one element.

after

before

Tour: a-e-f-c-d-b-g-h  Tour: a-b-c-d-e-f-g-h

Figure 2: An example of a block shift operation: the
BLOCK cities are e and f, and the exchange partner is city
b.
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Table 3: Experimental results of proposed and conventional methods for a 13-city asymmetric TSP.

Exact solution: 191.48
Name Proposed | previous work[2] | 2-opt | Hasegawa[l]
Minimum tour | 191.48 191.48 249.20 201.03
Maximum tour | 263.66 249.35 321.91 272.96
Average tour 212.58 228.65 302.08 237.07

Table 4: Experimental results of proposed and conventional methods for a 70-city asymmetric TSP.

Exchange method Proposed (Block) | 2-point or-opt | 2-opt[1]

Minimum tour 756.26 1337.35 | 1053.52 | 823.90

Maximum tour 945.96 1895.92 | 1891.31 | 1053.52

Average tour 853.00 1589.86 | 1343.57 | 917.26

Computational time 40.8[s] 45.1[s] | 33.0[s] | 35.8[s]
Minimum relative frequency 1.00 1.77 1.39 1.09
Maximum relative frequency 1.00 2.00 2.00 1.11
Average relative frequency 1.00 1.86 1.58 1.08
Computational time relative frequency 1.00 1.11 0.81 0.88
Cumulative relative frequency 1.00 7.31 3.56 1.15

4.3. Combination of block shift operations and tabu
search

We combine chaotic neural networks and block shift op-
erations as follows. A BLOCK consists of two cities. If
the ¢-th city in the tour is the first city of the BLOCK, the
(i 4+ 1)-th city is the second city in the BLOCK. The part-
ner for the exchange is determined by the procedure given
in Section 3.1.

4.4. Bidirectional search and unidirectional search

In the proposed method, two search modes are used. The
bidirectional search mode calculates both clockwise and
counterclockwise tours. The unidirectional search mode
calculates the tour in a specified direction. The bidirec-
tional search mode uses block shift operations and 2-opt
exchange, while the unidirectional search mode uses only
block shift operations.

4.5. 3-opt exchanges

In this paper we use 2-opt and 3-opt exchanges through-
out the paper. Moreover, a 3-opt exchange is made by exe-
cuting two 2-opt exchanges (see Fig. 3).

The probability for the ¢-th neuron to be included the 3-
opt exchange is given by % This distribution is intended to
make the constituent neurons have different probabilities
for 3-opt exchange.

Tour: a-b-g-f-e-c-d-h Tour: a-b-g-f-e-d-c-h

3-0N h

2-opt
3-opt

Tour: a-b-c-d-e-f-g-h

Figure 3: A sequence of two 2-opt exchanges (swapping ¢
with d and then b with &) is equivalent to a 3-opt exchange.

5. Results of numerical experiments

In experiment 1, we take some benchmark problems of
TSPLIB [7], which is a list of benchmark problems of sym-
metric TSPs, and modify them to be asymmetric TSPs. The
13-city problem is created by mixing problems eil76 and
ftv47 from TSPLIB. We performed 30 trials for each prob-
lem. Performance comparisons of the various methods are
shown in Table 3. The proposed method and our previous
method[2] found the exact solution.
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Table 5: Experimental results of proposed and conventional methods for p43.

Method Proposed Proposed Proposed Proposed | Hasegawa[l] Local Hybrid
2-opt (1:1) | 2-opt (7:3) | k-opt(1:1) | k-opt(7:3) Search[8] | GA[9]
Minimum tour 5620 5620 5620 5621 5622 N/A N/A
Maximum tour 5630 5627 5628 5629 11105 N/A N/A
Average tour 5623.2 5622.3 5622.5 5622.8 5857.8 N/A N/A
Gap [%] 0.05 0.04 0.04 0.04 4.06 0.01 0
Table 6: Experimental results of proposed and conventional methods for rbg443.
Method Proposed Proposed Proposed Proposed | Hasegawa[l] Local Hybrid
2-opt (1:1) | 2-opt (7:3) | k-opt (1:1) | k-opt (7:3) Search[8] | GA[9]
Minimum tour 2720 2720 2720 2720 2891 N/A N/A
Maximum tour 2727 2723 2729 2723 3058 N/A N/A
Average tour 2720.6 2720.2 2721.2 2720.06 2935.1 N/A N/A
Gap [%] 0.02 0.007 0.04 0.002 7.3 0.09 0
In experiment 2, we evaluated the relationship between References

the computational time and the tour. We use relative ratio to
evaluate performance of the methods. In Table 4, we show
an example of the relationship between the computational
time and the tour for a 70-city asymmetric TSP modified
from ¢il76 and ftv47 in TSPLIB. From the viewpoint of
cumulative relative frequency the method proposed in this
paper is the best. As a result, the proposed method provides
the best balance from the point of view of the relative ratio.

In experiment 3, we evaluated some benchmark prob-
lems of TSPLIB [7], performing 100 trials for each prob-
lem. We used the 17-city asymmetric problem ‘br17’, the
43-city asymmetric problem ‘p43’, the 48-city asymmet-
ric problem ‘ry48p’ and the 443-city asymmetric problem
‘rtbg443’. We show comparisons of the methods for ‘p43’
and ‘rbg443’ in Table 5 and Table 6. In these tables, the
ratio of exchange methods (block shift : 2-opt) are 1 : 1 or
7 : 3. The results shown that a high ratio of block shift op-
erations to 2-opt exchanges achieve the exact solution more
frequently.

6. Conclusions

In this paper, we have proposed a method for solving
an asymmetric TSP using chaotic neural dynamics. The
proposed method gives better solutions than the method of
Hasegawa et al.[1], although it is not superior to the exist-
ing method of using a hybrid genetic algorithm[9].

A future problem is to investigate a method to select
good parameters automatically.
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