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Abstract—The traveling salesman-problem (TSP) is
one of the most typical NP-hard combinatorial optimiza-
tion problems. To construct a heuristic algorithm for solv-
ing TSPs, a nearest-neighbor method is often used to re-
duce a solution-space because it is very rare to connect
two cities which are located in the far distance. On the
other hand, to analyze the characteristics of real networks
many geographical complex network models have already
been proposed. The networks constructed by the geograph-
ical complex network model have similar properties with
the optimal tours of TSPs: the edges which connect dis-
tant two vertices and intersection of edges are inhibited.
In this paper, we propose a new reduction method for the
solution-space of TSP using the geographical complex net-
work models.

1. Introduction

Finding optimal solutions of combinatorial optimization
problems such as scheduling problem, routing problem,
drilling problem, computer wiring and VLSI design is one
of the most important issues in science and engineering.
The travelling salesman problem (TSP) is one of the most
famous combinatorial optimization problems. If we de-
velop an efficient algorithm for solving the TSP, we can
apply it to reduce costs, time and human resources of many
optimization problems.

The TSP is formulated by the following definition. A
set of N cities VC = {1, . . . ,N} and the distance di j (i, j ∈
VC) between two cities i and j are given. Then, a so-
lution of the TSP is a tour described by a permutation
σ = (σ(1), . . . , σ(N)), where σ(k) = i indicates that city
i is visited at the kth order in the tour. Thus, the aim of
the TSP is to find a permutation σ which minimizes the
following equation:

f (σ) =
N−1∑

i=1

dσ(i)σ(i+1) + dσ(N)σ(1) . (1)

In this paper, we study the symmetric TSP which satisfies
di j = d ji for all pairs of two cities i and j. For an N-
city TSP, the possible number of all tours is (N − 1)!/2.
Thus, the number of tours increases exponentially with N.
The TSP belongs to a class of NP-hard, it is believed that

no algorithms can find an optimal tour in polynomial time.
Therefore, many approximation algorithms have been pro-
posed to find near optimal solutions of TSPs.

To obtain the near optimal solutions in a practical com-
putational time by an approximation algorithm, we reduce
a solution-space using an intrinsic property of an optimal-
tour of TSP: the most of edges in the optimal-tour (optimal-
edges) connect two cities locally. In fact, it has already
shown that a distribution of an order of neighbors in opti-
mal tours decays exponentially [1].

One of the simplest methods for reducing a solution-
space is the mth-Nearest-Neighbor (mNN). In the mNN,
only edges that are connected with m nearest cities could
be elements of the solution-space. However, if we want
to include all the edges in the optimal tour by the mNN,
we have to set the value of m large, because relatively long
edges often exist in the optimal tour. Thus, the mNN in-
cludes many redundant edges.

On the other hand, many studies of the complex net-
works have revealed a fact that many real networks share
some topological characteristics such as small-world [3]
and scale-free [4] structures. Many real networks embed-
ded in a metric space, for example, road traffic networks,
railroad networks and airline networks are analyzed by a
geographical complex network model [5]. These networks
have the following intrinsic properties that are similar to an
optimal tour of the TSP: it is very rare to connect and no
intersection of edges are allowed.

Then we have already proposed a reduction method for
the TSP using an idea of the geographical complex net-
work models [6, 7]. In the method, to apply the geo-
graphical complex network models to the TSP, we have
also introduce an order of neighbors instead of distance.
Although the proposed method reduces a solution-space
in a stochastic manner, the proposed method reduces the
solution-space efficiently in some cases.

In this paper, we propose an application of the geograph-
ical complex network models to the TSP in respect to re-
duce a solution-space. Introducing an intrinsic property of
the TSP, we systematically reduce the solution-space. As
a result, we can construct smaller solution-spaces than the
mNN that includes more optimal-edges.
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2. The proposed method

We propose a reduction method for the solution-space
of the TSP based on idea of a geographical threshold
graph [8], which is one of the geographical complex net-
work models. In the geographical threshold graph, a vertex
in a set of N vertices VG = {v1, . . . , vN} is distributed in the
dth Euclidean space randomly with a uniform density ρ. A
vertex vi (i = 1, . . . ,N) whose coordinates are denoted by
(xi1, . . . , xid) has a weight wi ≥ 0 which follows a density
function f (w). The connection rule of a pair of vertices vi

and v j (vi, v j ∈ VG) is defined by the following inequality:

(wi + w j) h(di j) ≥ θ, (2)

where θ is a constant threshold and h(di j) is a decreasing
function of di j (> 0) which is the Euclidean distance be-
tween two vertices vi and v j.

To apply the geographical threshold graph to the TSP,
we consider a network constructed by the geographical
threshold graph as a solution-space of the TSP. Thus, each
city corresponds to vertex and edges describe the route of
neighbor between two cities. However, we cannot apply
the generation rule of the geographical threshold graph di-
rectly. In some instances of the TSPs, some cities are iso-
lated from the others. Thus, long edges are required to
connect those cities, however, from Eq. (2), the edges are
hardly connected when a summation of weight is small or
distance of them is long. Therefore, this restriction causes
a division of the solution-space.

To solve the division problem, we introduced a new cri-
terion based on an order of neighbors [6, 7]. We focus on
the order of neighbors of city j from city i and define it as
the neighbor rank ni j (ni j = 1, . . . ,N − 1). For example, if
city j is the nearest neighbor of city i, then ni j = 1. We
define the connection rule in the proposed method by the
following inequality:

wi + w j

ni j
β
≥ θ, (3)

where β is the scaling parameter of ni j and wi is the weight
of city i. Note that we consider a solution-space as a di-
rected network because the neighbor rank ni j is not equal
to n ji.

Furthermore, to decide a weight of each city, we intro-
duce local density information. If the neighbor rank ni j is
small or summation of the weights is large, city i and city
j are connected. Thus, in the proposed method, it is very
important to decide the value of wi. In Refs [6, 7], we as-
signed random values wi to each city. As a result, when a
large value is assigned to a city which is far from the other
cities, the proposed method obtains better solutions than
the mNN. To assign the large value to the isolated cities,
in this paper, to decide the weight, we use the number of
cities in a circle (Fig. 1). A radius dr of the circle is defined

O
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dr = 10
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j

k

Figure 1: How to decide a weight of city i. In this example,
the number of cities is N = 9. The length of dashed line and
solid line correspond to dmax = 30 and dr = dmax/

√
N = 10,

respectively.

by the following equation:

dr =
dmax√

N
, (4)

where dmax is the longest distance among all pairs of cities.
The weight for city i is decided by the following equation:

wi =
1
ci
, (5)

where ci is the number of cities in the circle centered at city
i with radius dr. Then, a weight of each city is assigned by
the following procedure.

1. The maximum length dmax is calculated from all pairs
of cities.

2. The radius dr is calculated by Eq. (4).
3. The number of cities ci in a circle centered at city i is

calculated.
4. The value of wi is assigned by Eq. (5).

Figure 1 shows an example of dmax, dr and a circle. In
Fig. 1, three cities i, j and k are included in the circle. Thus,
the value of a weight of city i is wi = 1/3.

Let us consider a set of N cities VC as in Sec. 1. A
solution-space is generated by the following procedure.

1. Assign a weight wi (i = 1, . . . ,N) to each city.
2. Calculate the distance di j for all pairs of city i and city

j (i, j ∈ VC , i , j).
3. Calculate the neighbor rank ni j.
4. Connect two cities i and j according to Eq. (3).

3. Computational experiments

To compare the performance of the proposed method
with that of the mNN, we generate solution-space by the
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Figure 2: The rate of the number of optimal-edges included
in the solution-space (R [%]). The vertical axis is R and the
horizontal axis is the rate of the number of edges in the
solution-space to the number of edges in complete directed
graph N(N − 1) [%].

mNN and by the proposed method, adjusting the threshold
θ in Eq. (3) to set the same size of the solution-space. Then,
we compare the performance of the proposed method and
the mNN.

We evaluated the performance of the proposed method
and the mNN with the following measure R: the rate of the
number of optimal-edges included in the solution-space.
The measure R is defined by the following equation:

R =
1
N

N∑

i=1

oi

2
× 100 [%], (6)

where oi (oi = 0, 1, 2) is the number of optimal-edges from
city i included in the reduced solution-space, and N is the
number of cities. If the value of R equals to 100 [%], a
solution-space includes all optimal-edges. To solve effi-
ciently, the value of R is required to be high in a small
solution-space.

We use pcb442 in the TSPLIB [2] for this simulation.
The number of neighbors m for the mNN is varied from 1
to 20. The parameter β in Eq. (3) is set to 2.0, 4.0 and 6.0.

4. Results

We compare the value of R by the proposed method
with that by the mNN. Figure 2 shows the relationships
between the size of a solution-space and R. From Fig. 2,
the proposed method includes more optimal-edges than the
mNN in many cases. In particular, the proposed method
with β = 2.0 includes all optimal-edges only a half size of
solution-space by the size of the mNN. Figure 2 also shows
that the value of R of the proposed method with β = 6.0 is
less than that with β = 2.0 and 4.0. This reason is that large
β strongly inhibits to connect edges from city i to city j.
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Figure 3: The relation between wi + w j and the left-hand
side of Eq. (3) (in this example, m = 9 and β = 2.0).
Circles, squares and triangles correspond to optimal-edges,
edges selected by the mNN and edges selected only by the
proposed method, respectively. Solid line shows the thresh-
old θ of the proposed method.

Therefore, the solution-space of the proposed method with
large β becomes similar to that of the mNN.

To analyze the difference of the solution-space between
the proposed method and the mNN, we examine the rela-
tion between the summation of weights, wi + w j, and the
left-hand side of Eq. (3). Figure 3 shows the relation be-
tween the summation of weights and the left hand side of
Eq. (3). In Fig. 3, each point on the mth top line corre-
sponds to the edges whose neighbor rank is ni j = m. For
example, each point on the top line correspond to the edge
which connects its nearest city. Thus, the solution-space by
the mNN corresponds to squares on the top mth line, while
all edges in the solution-space by the proposed method are
over the threshold θ. From Fig. 3, some optimal-edges are
included only in the solution-space reduced by the pro-
posed method. This reason is that large weights are as-
signed to two cities connected by an optimal-edge even
though its neighbor rank is large.

We investigate the optimal-edges included in the
solution-space by the proposed method and the mNN. Fig-
ure 4 shows edges included in the solution-space by the
proposed method and the mNN. In Figs. 4 (a) and (c),
the mNN cannot include some optimal-edges which con-
nect the isolated cities, while the proposed method includes
these edges as shown in Figs. 4 (b) and (d). In the mNN,
the value of m must be set to large enough to connect such
edges. On the other hand, in the proposed method, al-
though the neighbor rank is large, the isolated cities are
easily connected because such cities have a large weight.
Therefore, the proposed method includes all optimal-edges
by a smaller solution-space than the mNN.
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Figure 4: The solution-space obtained by the mNN and the proposed method (in this example, m = 9 and β = 2.0).
The edges from city i to city j where i < j connected by the mNN and the proposed method are shown in (a) and (b),
respectively. The edges from city i to city j where i > j connected by the mNN and the proposed method are shown
in (c) and (d), respectively. Black edges show the solution-space. Red solid edges show the optimal-edges included in
the solution-space. Red dashed edges indicated by orange circles in (a) and (c) show the optimal-edges which are not
included in the solution-space by the mNN. Color bars in (b) and (d) indicate that the weight of each city by the proposed
method. Orange circles in (b) and (d) indicate that the optimal-edges can be included in the proposed method.

5. Conclusion

In this paper, we propose a new reduction method for a
solution-space of the TSP with an idea of the geographical
threshold graph, the order of neighbors, and local informa-
tion for a deterministic weight assignment. As a result, the
proposed method includes optimal-edges more efficiently
than the mNN.

One of the important future works is how to find the best
size for local density and the parameter of the connection
rule for the proposed method. It is also important to ap-
ply approximation algorithms to the reduced solution-space
and evaluate its performance in the solution-space.
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