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Abstract—We theoretically show that non-deterministic
random bits can be generated due to the mixing property of
chaotic systems and microscopic noises. Moreover, it is re-
ported that with chaos laser chips which are designed on the
basis of the theory, non-deterministic random bit sequences
can be generated at fast rates up to 2.08 gigabit per second
(Gbps).

1. Introduction

Random bit generation is important for many applica-
tions, such as cryptography, numerical computation, and
stochastic modeling [1, 2]. In particular, fast generation of
unpredictable truly random bit sequences is very important
to achieve high security of communication systems.

The generation of such random bit sequences can be
achieved by sampling observables obtained from physical
phenomena which are expected to be random and convert-
ing them to bit sequences. The typical example is quantum
physical random bit generators. They utilize quantum deci-
sion such as detection of single photon or vacuum fluctua-
tion, which are in principle unpredictable [3, 4]. However,
the sampling rate has been less than the order of GHz due
to the limited bandwidth of detectors and amplifiers.

Recently, random bit generation using fluctuations in op-
tical phenomena such as laser chaos or amplified sponta-
neous emission have been developed in order to obtain un-
predictable random bit sequences extremely fast [5, 6, 7].
In particular, the use of laser chaos could make possible
random bit generation which is efficient from the view-
point of power consumption, since vary small noises such
as spontaneous emission noise can be converted to macro-
scopic signals by the dynamical instability without addi-
tional high power amplfiers.

So far, many experimental demonstrations of random bit
generation with laser chaos have been reported [5, 8, 9, 10,
11, 12]. However, the role of chaos in generating unpre-
dictable random bits has not yet been studied in detail. The
elucidation of the mechanism of the physical random bit
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generation is important in order to guarantee the unpre-
dictability.

In this paper, we theoretically show that non-
deterministic and unpredictable random bit sequences can
be generated due to the mixing property of chaotic laser
systems and microscopic noises, such as quantum noises
due to spontaneous emission [13]. Moreover, we report an
experimental demonstration of random bit generation us-
ing monolithically integrated chaos laser chips which are
designed on the basis of the above theory and fabricated
with photonic integration technologies. We experimentally
show that random bit sequences passed standard statistical
test suites for randomness can be generated at fast rates up
to 2 Gbps [13].

2. Random bit generation with chaos

Here, let us consider the time evolution of an observ-
able I (t) in a dynamical system subject to random pertur-
bation such as microscopic noise. (In laser system, the ob-
servableI is usually a output light intensity and the micro-
scopic noise is quantum noise, such as spontaneous emis-
sion). Then, if the system is strongly chaotic, it has the
mixing property. The mixing property of chaotic systems
implies that any arbitrary smooth initial probability den-
sity of I (t) converges to a unique invariant density, known
as the natural invariant densityρ(I ). In principle, the non-
determinism ofI (t) is based on non-determinism of the mi-
croscopic noise, but the asymptotic invariant density is a
property of the chaotic dynamics. This convergence to the
invariant density is a key fundamental point for the use of
chaotic systems to generate large amplitude signals for ro-
bust non-deterministic random bit generation.

The binary signals can be extracted from the observable
I (t) by assigning bit 0(1) to it less (greater) than a threshold
Ith, whereIth is defined byρ(I ) so that it satisfies,∫ Ith

0
ρ(I )dI =

∫ ∞
Ith

ρ(I )dI. (1)

When the chaotic dynamics starts from any arbitrary ini-
tial state and evolves in time subject to perturbation by mi-
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Figure 1: Photograph of a random signal generator module.
The module contains two independent chaos laser chips, as
shown in Fig. 2. The electrical signals obtained from the
integrated PD in the laser chips (Fig. 2) are extracted from
the high-frequency connectors via microstrip lines inside
the module.

croscopic noise, and finally ends with an observation as-
signing a binary bit, if the interval between observations is
sufficiently long, then the bits will be random with equal
probabilities of 0 or 1, that is, probability 1/2.

However, it is usually difficult to observe the conver-
gence process to the invariant density in real experimental
systems, because the states of the system are needed to re-
set to the same initial state many times, or wait long times
until the laser revisits the neighborhood of the same ini-
tial state many times. Observation of the autocorrelation
is a more practical way to monitor the rate of convergence
of the probability distribution. The mixing property of the
convergence to the invariant density implies the decay of
the autocorrelation function,

C(τ) =< I (t + τ)I (t) >t − < I (t) >2
t→|τ|→∞ 0, (2)

where the bracket defines the time average,< X >t=

limT→∞ 1/T
∫

X(t)dt. In particular, if the system is
strongly chaotic, i.e., hyperbolic, the autocorrelation expo-
nentially decays. The decay rate is the same as the rate
of convergence to the invariant density. If the time inter-
val between the observations, i.e., the bit-extraction time is
much longer than the time required for the time-evolving
probability density to converge to the natural invariant den-
sity, then the statistical correlation between bits will be zero
and the sequence will be truly random. It is important to in-
crease the decay rate of the autocorrelation in order to gen-
erate unpredictable random bit sequences as fast as possi-
ble.

3. Chaos laser chips

In order to carry out the above method with a small op-
toelectronic device, a random signal generator module was
fabricated (see Fig.1). This module contains two chaos
laser chips, which are designed so that the autocorrelation
of the output signal vanishes as fast as possible, and fab-
ricated with photonic integration technologies in InGaAsP
material systems.

Fig. 2 shows the schematic and picture of the chaos
laser chip. The laser chip consists of a distributed feedback
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Figure 2: A schematic (a) and photograph (b) of the fab-
ricated chaos laser device. The laser is contained in the
module shown in Fig. 1. The lengths of DFB, SOA1,
SOA2, PD, and passive waveguide are respectively 300µm,
200 µm, 100µm, 50 µm, and 10 mm. The width of the
waveguide is 2µm. DFB, SOAs, PD sections contain the
strained InGaAs/InGaAsP multi-quantum well active layer
bounded by the non-doped InGaAsP separate-confinement-
heterostructure layer. For the DFB laser, a grating is fab-
ricated so that the laser emits light around the wavelength
λa= 1.55µm. The passive region contains the intrinsic InP
cladding layer and the non-doped InGaAsP waveguiding
core layer with the bandgap corresponding to the wave-
lengthλb = 1.3µm, which is shorter thanλa, to avoid light
absorption. These layers are made by butt-joint selective
growth.

(DFB) laser with a single optical frequency, passive waveg-
uides, two semiconductor optical amplifiers (SOAs), and
a fast response photodiode (PD). The light emitted from
the DFB propagates via the passive waveguide and two
SOAs, reflected at high-reflection-coated edge of the pas-
sive waveguide, and fed back to the DFB, inducing high-
frequency chaotic oscillations in the gigahertz regime. The
feedback delay length is 10 mm. The strength and phase
of the optical feedback is controlled with the current to the
SOAs. The generated chaotic signal is detected with the
integrated PD with coupling efficiency over 70 %.

Fig. 3(a) shows a typical power spectrum obtained from
the chaos laser chip shown in Fig. 2. The injection current
to DFB is 40 mA, which is about three times of the thresh-
old current, while the injection currents to SOA1 and SOA2
are respectively 10 mA and 5 mA. The feedback power ra-
tio corresponds to 9.5 %, which is larger than the chaos
laser chip reported in [12]. One can see that the spectrum
is very flat and there are no sharp peaks suggesting weak
instability. This flatness of the spectrum is achieved by the
stronger feedback and better tunability by the use of dual
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Figure 3: (a) The rf-spectra of the chaotic light intensity
and the laser noise. (b) The autocorrelation of the chaotic
light intensity.

SOAs. Moreover, the intensity is increased by more than
about 25 dB compared to the noise spectrum of the solitary
laser noise measured when the injection currents to SOAs
are not applied, suggesting that the chaotic signal is robust
with respect to the external electrical perturbations.

Fig. 3(b) shows the autocorrelation function correspond-
ing to the spectrum of Fig. 3(a). The correlation has a
peak around the relaxation oscillation period, and the peak
rapidly decays over just a few periods due to the strongly
chaotic dynamics. Note that there are no significant peaks
associated with the feedback delay time, unlike the chaotic
laser systems with long feedback delay [5]. This means
that tuning of the sampling interval is not necessary [5].

4. Random bit generation

The conversion to the binary signals from the generated
chaotic signals is carried out on the basis of the method
mentioned in sec. 2. First the chaotic signal is digitized at
a sampling interval 0.48 ns (the sampling rate 2.08 GHz).
As shown in Fig. 3(b), the autocorrelation of the chaotic
signal has almost vanished at this time. The sampled sig-
nals can be converted to binary signal (1 or 0) by compar-
ing a threshold value which is decided using the invariant
density obtained from the time-series of the chaotic sig-
nal (see Eq.(1)). However, it is important to note that real
systems cannot exactly achieve the equality (1) which as-
sumes that the observation of the signal and comparison

with the threshold value is done with infinite precision. In
this experiment, the threshold is determined by a method
with only 8-bit precision which cannot avoid some small
statistical bias. In order to generate a random bit sequence
with lower statistical bias, two independent bit sequences
obtained from two chaos laser chips are combined by a log-
ical Exclusive-OR (XOR) operation, which is a simple and
common way to reduce statistical bias.

Statistical randomness of the generated bit sequence is
evaluated using the standard test suites for random number
generators provided by National Institute of Standard Tech-
nology (NIST), NIST Special Publication 800-22 (revision
1a) [14] and “Diehard” tests [15]. The NIST test consists of
15 statistical tests, as shown in Table 1, and each test was
performed using 1000 instances of 1Mbit sequences gen-
erated with sampling rate 2.08GHz and significance level
0.01. To pass each test, the P-value (the uniformity of the
p-value) should be larger than 0.0001 and the proportion
should be in the range of 0.99± 0.0094392. Diehard tests
consist of 18 statistical tests, as shown in Table 2. The tests
were performed using 92 Mbit sequences and the same sig-
nificance level 0.01, which means that the p-values should
be larger than 0.01 and smaller than 0.99. We confirmed
that the bit sequences obtained in this experiment pass all
tests of both the NIST and Diehard tests. The results are
shown in Tables 1 and 2.

5. Summary

In summary, we showed a theory of non-deterministic
random bit generation using strongly chaotic systems with
microscopic noises. On the basis of the theory and us-
ing photonic integration technologies, monolithically in-
tegrated semiconductor chaotic laser chips were designed
and fabricated. We also showed that at fast rates up to 2
Gbps, the chaos laser chips generate random bit sequences
which pass standard statistical tests for randomness.
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