
Visualizing high-dimensional time series data

Yoshito Hirata and Kazuyuki Aihara

Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Email: yoshito@sat.t.u-tokyo.ac.jp

Abstract—We propose a method for visualizing high-
dimensional time series data. In this method, we pile re-
currence plots for various observables, and project this pile
along a time axis and/or the axis of observables. We call
this method layered recurrence plot. We show that the pro-
posed method is useful for observing transitions in high-
dimensional dynamics.

1. Introduction

Although the developments of measurement techniques
now enable us to produce a lot of high-dimensional time se-
ries data, it is still difficult to understand intuitively the un-
derlying dynamics. A common set of techniques for such
a purpose include dimension reduction [1, 2, 3] and clus-
tering [4]. Because the types of such techniques are cur-
rently limited, we would like to add another type of meth-
ods, which is the visualization of high-dimensional data.

In this manuscript, we propose how to use recurrence
plots [5, 6] for visualizing high-dimensional time series
data. First, we pile recurrence plots obtained from different
observables. Then, we project this pile along a time axis or
the axis of observables. We demonstrate using numerical
examples that the proposed approach shows the properties
of the underlying dynamics.

The rest of this manuscript is organized in the follow-
ing way: In Section 2, we introduce recurrence plots more
formally. In Section 3, we propose the pile of recurrence
plots as a layered recurrence plot. In Section 4, we show
some numerical examples. In Section 5, we conclude this
manuscript.

2. Recurrence plots

2.1. Recurrence plots

A recurrence plot [5, 6] is a two-dimensional plot origi-
nally proposed for visualizing a time series data. Suppose
that a time series {x(i) : i = 1, 2, . . . , I} is given. Let us
denote a threshold by ε. Then a recurrence plot is defined
as

R(i, j) =

{
1, if d(x(i), x( j)) < ε,
0, otherwise.

(1)

If R(i, j) = 1, then we plot a point at (i, j). If R(i, j) = 0,
then we do not plot anything at (i, j). This simple plot can

show a lot of things. For example, we can calculate correla-
tion dimension and correlation entropy by using recurrence
plots [7, 8]; In addition, we learned that we can reproduce
a rough shape of the original time series from a recurrence
plot even if the original time series is given in a time series
whose dimension is more than one [9]. Therefore, a recur-
rence plot eventually contains almost all information for
the underlying dynamics except for the spatial scale. From
this viewpoint, a recurrence plot is a nice tool for visualiz-
ing time series data.

The portion of places where a dot is plotted is called the
recurrence rate [10]. We choose the threshold such that the
recurrence rate becomes 20%.

2.2. Extensions of recurrence plots

There are two known extensions of recurrence plots to
multivariate time series: The first extension is called cross
recurrence plot, while the second extension is called joint
recurrence plot.

Suppose that there are two time series {xk(i) : i =
1, 2, . . . , I} and {xl( j) : j = 1, 2, . . . , J} given. Then, a cross
recurrence plot [11] is defined as

CRk,l(i, j) =

{
1, if d(xk(i), xl( j)) < εk,l,
0, otherwise.

(2)

To use the cross recurrence plot, two observables should
have the same dimension and the similar values.

Suppose that there are two time series {xk(i) : i =
1, 2, . . . , I} and {xl(i) : i = 1, 2, . . . , I}. This time, the length
of two time series should be the same. Then, the other ex-
isting extension, a joint recurrence plot [12], is defined as

Rk(i, j) =

{
1, if d(xk(i), xk( j)) < εk,
0, otherwise,

(3)

Rl(i, j) =

{
1, if d(xl(i), xl( j)) < εl,
0, otherwise,

(4)

JRk,l(i, j) = Rk(i, j)Rl(i, j). (5)

In Ref. [6], the joint recurrence plot is further extended to
a multivariate time series whose dimension is greater than
2 in the following way:

JR(i, j) =
K∏

k=1

Rk(i, j). (6)

The problem of this definition is that JR(i, j) becomes very
sparse when K is large.
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3. Layered recurrence plots

Alternatively, we define a layered recurrence plot as

Rk(i, j) =

{
1, if d(xk(i), xk( j)) < εk,
0, otherwise,

(7)

for k ∈ {1, 2, . . . ,K}. The difference between recurrence
plots and the layered recurrence plot is that we pile the set
of recurrence plots on the top of them successively.

For the visualization, we apply some operation to
marginalize j or k. One of such operations can be the prod-
uct like defined in Eq. (6) (see Ref. [6]). Another possibil-
ity could be a sum over j or k. When we take a sum over
k, then we call it a layered recurrence plot summed over
space:

S (i, j) =
∑

k

Rk(i, j). (8)

Using this S (i, j), we can show which time is close to which
time, namely the strength of recurrence given a pair of
times. The better point compared to Eq. (6) is that we can
see some non-zero value if some of observables in some
time are close to those in another time.

When we take a sum over j, then we call it a layered
recurrence plot summed over time:

T (i, k) =
∑

j

Rk(i, j). (9)

Using this T (i, k), we can show the relationship between
time and observables, namely the strength of recurrence
given a pair of time and spatial index. This way of look-
ing at a time series is new for this manuscript.

4. Results

We show two examples of layered recurrence plots in
this Section.

The first example is a set of coupled logistic maps [13]:

yn(t + 1)
= (1 − 2η)(3.8yn(t)(1 − yn(t)))
+(η − ξ)(3.8yn+1(t)(1 − yn+1(t)))
+(η + ξ)(3.8yn−1(t)(1 − yn−1(t))),

(10)

where we define yn+100(t) = yn(t), η = 0.05 and ξ = 0.01.
We generated a time series of length 200 from this system.

A time series looks like one shown in Fig. 1.
First, we apply Eq. (8). The results are shown in Fig. 2.

Here, whiter points have recurrences for more observables.
We can clearly see the pseudo-periodicity of the underlying
dynamics although this pseudo-periodicity is not apparent
in the time series shown in Fig. 1. This tendency is shown
more clearly in Fig. 2 than the recurrence plot for the orig-
inal high-dimensional time series (see Fig. 3). We can see
from Fig. 2 that the time series is nonstationary because the
graph is darker at the top left and the bottom right corners.
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Figure 1: A time series of coupled logistic maps.

Time

T
i
m
e

 

 

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0

10

20

30

40

50

60

70

80

90

100

Figure 2: The layered recurrence plot summed over space
for the time series of the coupled logistic maps shown in
Fig. 1.

Second, we apply Eq. (9). The results are shown in
Fig. 4. We can observe in Fig. 4 that there are some trav-
elling waves from smaller indices to the larger around the
indices of 20, 65, and 95. These travelling waves cannot be
seen clearly in the time series shown in Fig. 1.

Thus, this example of the coupled logistic maps demon-
strated that the layered recurrence plot is good at emphasiz-
ing small tendencies hidden within the given time series.

We look at the Lorenz’96 model [14, 15] as our second
example. The Lorenz’96 model is described as follows:

dui

dt
= ui−1(ui+1 − ui−2) − ui + F − huc

b

J∑
j=1

v j,i, (11)

dv j,i

dt
= cbv j+1,i(v j−1,i − v j+2,i) − cv j,i +

hvc
b

ui, (12)

uI+i = ui, v j+J,i = v j,i+1, v j−J,i = v j,i−1, (13)

where we set I = 40, J = 5, F = 8, b = 10, c = 10,
hu = 1, and hv = 1. We assume that we can observe v j,i for
i = 1, 2, . . . , I and j = 1, 2, . . . , J. Hence, the time series is
now 200-dimensional.

A time series is shown in Fig. 5. We can sightly see the
travelling waves in this figure.
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Figure 3: The recurrence plot for the original high-
dimensional time series.
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Figure 4: The layered recurrence plot summed over time
for the time series of the coupled logistic maps shown in
Fig. 1.

A layered recurrence plot summed over space is shown
in Fig. 6. We can also see in this figure that there is the
pseudo-periodicity. But, this time, diagonal whiter lines
tend to be interrupted by blacker spaces. This interrup-
tion corresponds to sensitive dependence on initial condi-
tions [16]. The similar dynamical tendency is also seen in a
recurrence plot for the original 200-dimensional time series
(Fig. 7).

A layered recurrence plot summed over time is shown in
Fig. 8. In this figure, we can more clearly see that there are
some travelling waves than Fig. 5.

5. Conclusions

We have proposed a way to visualize a high-dimensional
time series using recurrence plots, which is called a lay-
ered recurrence plot. When we pile recurrence plots ob-
tained from various observables and apply some opera-
tion to marginalize the axis of space, then we can see the
pseudo-periodicity and sensitive dependence on initial con-
ditions of given time series data. When we apply some op-
eration to marginalize the axis of time, we can show the
relationship between the time and the observables. Espe-
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Figure 5: A time series v j,i of Lorenz’96 model.
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Figure 6: A layered recurrence plot summed over space for
the time series of Lorenz’96 model shown in Fig. 5.

cially, travelling waves can be easily observed. We believe
that the proposed method help to understand the compli-
cated dynamics hidden in a high-dimensional time series.

The methods seem to work for high-dimensional time
series obtained from wide contexts, although we should ac-
cumulate emperical evidnece for their efficacy in the future.
We also will investigate the dependences on the parameters
we used in our future communication.
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Figure 7: A recurrence plot for the original 200-
dimensional time series of Lorenz’96 model.
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Figure 8: A layered recurrence plot summed over time for
the time series of Lorenz’96 model shown in Fig. 5.
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