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Abstract– Recently, physical random number 

generators (RBGs) based on chaotic semiconductor lasers 

were shown to exceed Gbit/s rates. Whether secure 

synchronization of two high rate physical RBGs is possible 

remains an open question. Here we propose a method, 

whereby two fast RBGs based on mutually coupled chaotic 

lasers, are synchronized. Using information theoretic 

analysis we demonstrate security against a powerful 

computational eavesdropper, capable of noiseless 

amplification, where all parameters are publicly known. 

The method is also extended to secure synchronization of a 

small network of three RBGs. 

 

1. Introduction 

 

In a typical scenario of a secure channel the 

communicating parties have to hold a common key in the 

form of a bit string which is known only to the two parties 

[1]. A secure deterministic key-exchange protocol 

between two parties over a public channel was discovered 

in 1976 by Diffie and Hellman based on number theory, 

and paved the road for modern cryptography [1]. 

Alternative physical mechanisms based on quantum 

mechanics have been suggested more recently for a secure 

key-exchange protocol with the important and unique 

ability of the two communicating parties to detect the 

presence of any third party trying to gain knowledge of 

the key [2]. The first layer of the quantum protocol is 

based on quantum ingredients such as entangled pairs of 

photons and results in correlated keys for both partners. A 

second, classical layer, consists of information 

reconciliation and privacy amplification (error correcting 

code and source coding). These result in identical keys for 

the communicating pair while leakage of information to 

an eavesdropper is eliminated, however, these procedures 

lower the rate at which random bits can be generated. 

An intriguing possibility for a non-deterministic, 

physical RBG that is appropriate to all of these 

applications, is a semiconductor laser (SL) in the presence 

of external feedback, whose output consists of large 

chaotic intensity fluctuations, characterized by pulses with 

typical width of 100 ps [3-6]. Indeed great progress has 

been made recently in demonstrating an RBG based on 

such lasers, with rates from a few Gbit/s [4,5] towards 

tera-bits/s [6,7]. A secure synchronization method, 

however, which is essential for utilization of the fast 

generation rate of the physical RBGs in a multiple node 

public channel cryptography network, remains to be 

demonstrated [8]. 

The focus of this work is to demonstrate secure 

synchronization of two high bandwidth RBGs over a 

public channel using a classical mechanism zero lag 

synchronization (ZLS) of two mutually coupled chaotic 

lasers [9]. The ZLS mechanism is not sufficiently secure 

in its simple form to act as a key-exchange protocol [10], 

and it serves only as an information carrier to generate 

correlated random bit sequences. Identical random bit 

sequences can be constructed from these correlated 

sequences via information reconciliation and privacy 

amplification [2,8]. Furthermore, the presented 

mechanism allows the secure generation of a 

synchronized random bit string amongst a small network 

of communicating parties. 

 

2. Results 
 

2.1. Synchronization of two RBGs 

 

We have numerically investigated the scenario of Fig. 1(a) 

where two mutually coupled lasers, A and B, are subject to 

both optical feedback and mutual coupling in a symmetric 

configuration. In general, ZLS can be achieved when that 

the sum of the self-coupling delay times of lasers A and B 

equals twice the mutual coupling delay time [11]. For 

simplicity of the discussion we first investigate the case 

where the optical self-feedback time delays, A and B, 

and the mutual coupling time delay, , are all equal to 10 

ns in the examples below. The strength of self-feedback 

and the mutual coupling are denoted by  and , 

respectively. The injection current to the threshold current 

ratio is selected to be 1.5, so that the lasers operate in the 

coherence collapse regime. In simulations, we use the 

Lang-Kobayashi (LK) equations which are a good model 

for the intensity dynamics of coupled semiconductor 

lasers  and are explicitly given in  references [12,13]. For 

each point in the phase space, (), the cross correlation 

at zero time lag was measured over a window of 20 ns and 

averaged over 1 s. 

There are mainly two phases as shown in Fig. 2(a). For 

small  A and B are not synchronized, whereas for 

larger values, ZLS emerges as the cross correlation 

gradually increases towards one. The cross correlation 

between A or B and a third laser, C, coupled 

unidirectionally (Fig. 1(a)) with the same time delays, 

CAB= and coupling strengths, C= C=is 

depicted in Fig. 2(b). A comparison of Fig. 2(a) and 2(b) 

indicates that ZLS of mutually coupled chaotic lasers is 

superior to the unidirectional coupling of laser C in a large 
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fraction of the phase space () [9], however, laser C can 

achieve the same level of synchronization as the mutually 

coupled lasers by amplifying the coupling signal, C, 

while maintaining its total input C+C+. In what 

follows, we first describe the utilization of ZLS as a 

carrier synchronizing the RBGs of A and B and then we 

analyze the security of the channel 

 

 
 

Fig. 1. Zero lag synchronization scheme for two and 

three lasers and an attacker. (a) Two mutually coupled SLs, 

A and B, where a third SL, C, is unidirectionally coupled 

to the mutually transmitted signals. The self-coupling 

delays for A and B are A and B, mutual coupling delay is 

 and  are the strengths of self and mutual couplings. 

and similarly C and C for C. (b) A small network of 

three symmetrically mutually coupled SLs, A, B and C, 

where all coupling delays are equal to  and a fourth laser, 

D, is coupled unidirectionally to each of the three 

transmitted signals. All delay times are equal. 

 

 
 

Fig. 2. Cross correlation for mutual and unidirectional 

coupling. (a) Cross correlation at zero time lag is 

calculated for two mutually coupled SLs (Fig. 1(a)) for a 

range of parameter values: , feedback strength and , 

coupling strength. (b) Cross correlation at zero time lag 

between a third SL coupled unidirectionally to one of the 

parties (Fig. 1(a)), using identical  and  as the parties.  

 

In the first step, each partner encodes a random binary 

sequence by modulating the chaotic intensity of its laser. 

The modulated intensity is thus M
2
I, where M=1 

corresponds to the transmission of “1” while M=M0 

corresponds to the transmission of “-1”. In simulations we 

modulate the intensity by changing the field and in the 

examples below M0 is set to 0.9 with a bandwidth of 1 

Gbit/s, the explicit equations are given in [10]. Our 

simulations indicate that the ZLS between the 

communicating pair remains robust even in the presence 

of such independent modulation by each of the parties. B 

for instance, decodes the massage transmitted from A by 

dividing the intensity received from A with its own 

synchronized laser output, prior to his modulation, 

<IA
R
>/<IB>, where the average, <…>, is over a 

predetermined duration of one bit transmission time. If 

this fraction is larger than (1+M0
2
)/2 then the estimated 

received bit is "1", otherwise "-1". The encoding/decoding 

procedures are implemented simultaneously at both lasers 

and are known as a mutual chaos pass filter (MCPF) 

mechanism [10]. The average bit error rate (BER) as a 

function of (is presented in Fig. 3(b).  

 

2.2. Protocol 
 

Parties A and B encode different random bit sequences, 

hence, the decoded bits are uncorrelated and independent 

of BER level. An identical random binary sequence is 

obtained using the following protocol: 

 The two partners start with an identical public 

random binary sequence of length L, SA=SB=S. 

 A compares his estimated received bit at time interval 

m, RA(m), to his random transmitted bit at the same 

time interval, TA(m). If RA(m)=TA(m), SA(m) is set 

equal to RA(m), otherwise SA(m) remains unchanged. 

Similarly, in the event RB(m)=TB(m), SB(m) is set 

equal to RB(m).  

 At the end of the MCPF procedure the average 

fraction of identical bits between SA and SB is given 

by  

)1(5.01 2
ppPAB   

where p stands for the BER of the MCPF procedure 

[8]. The meaning of p=0 is that A and B acted 

identically on the initial vectors S and PAB=1, 

whereas for p=1 only when the partners send different 

bits, S is altered differently by the two partners, hence 

PAB=0.5. For simplicity of discussion we assume 

statistically independent errors in the decoding 

procedure of A and B. However, it is expected that 

both decoders are correlated, since in the event the 

two lasers are temporally desynchronized the 

probability for an error bit for both of them increases 

in comparison to time slots of enhanced 

synchronization, as was indeed observed in 

simulations and is analyzed using symbolic 

mathematics in [8]. The two partners now possess 

correlated bit sequences. 
  To achieve the goal of two identical random bit 

sequences, an information reconciliation procedure is 

performed, a form of error correcting code, as for 

protocols of quantum cryptography [2]. At the end of 

this procedure the two partners hold identical random 

bit sequences.  

 Inevitably, leakage of information occurs during the 

information reconciliation procedure and is 

eliminated by a privacy amplification procedure 

which is also utilized in quantum cryptography for 

similar reasons [2].  
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The identical random bit sequences can serve as a 

common key generated over a public channel. The main 

question is whether a passive, unidirectionally coupled 

attacker, C, is capable of deducing the key, when all 

details of the protocol are publicly known. 

     Fig. 2 indicates that it is possible to select sets of 

parameters () such that the ZLS of A and B, is superior 

to the ZLS of C. For instance, for ns
-1
andns

-1 

the cross correlation at zero time lag between the parties is 

much higher, ~0.94, than correlation between the attacker 

and the parties ~0.5. An attacker using the same set of 

parameters as A and B would obtain a very high BER in 

his CPF mechanism [21], q~0.4 in our simulations (Fig. 

3(a)), in comparison to p~0.07 for A and B (Fig. 3(b)). In 

order to minimize his BER, the attacker can amplify C 

while decreasing C so that CCFig. 3(a) 

indicates that the minimum BER for the attacker, q~0.15, 

is obtained for (ns
-1

 C ns
-1

 while the parties 

are operating with (ns
-1

 0 ns
-1
 Though this is 

a much lower BER then C would obtain without the use of 

amplification, it remains more than twice as high as the 

BER of A and B 

 

 
 

Fig. 3. Bit error rate for the attacker and the parties. (a) 

BER is calculated for laser C in the setup of Fig. 1(a) as a 

function of (), when A and B are operating with 

0ns
-1

 and 40ns
-1

 (indicated by the arrow) (b) BER 

among the parties in the setup of Fig. 1(a) as a function of 

(). The BER for each () is averaged over 1 s and 

the modulation bandwidth is 1 Gbit/s. 

 

Information theory analysis 

The MCPF procedure is based on the synchronization of 

lasers A and B on the unmodulated portion of the mutual 

signal, while the modulated part can be considered as 

"noise". The noise to signal ratio for A and B is given by 

)(

2





I

M   (2) 

and this is larger for the attacker 

)(

2

CC

C

I

M







  (3) 

since C> and as a result q>p. A higher BER for C, 

however, does not necessarily indicate that the fraction of 

identical bits between SC and SA is reduced in comparison 

to the fraction of identical bits between SA and SB. One 

can show, using symbolic mathematics [8], that the 

average fraction of identical bits between SC and SA (or 

SB) is given by  

)4()5.0()5.11(5.01 2
pqpqpPAC   

A comparison between equations (1) and (4) yields the range 

of (p,q) values where PAC<PAB, indicated by the blue and red 

colored region in Fig. 4(a). Note that for p=q and also for a 

limited region where p<q, one finds PAC<PAB. 

 

 

Fig. 4. Secure regions for two and three synchronized 

RBGs. (a) Two mutually coupled lasers as in the setup of 

Fig. 1(a) where all delays are equal. (b) Three mutually 

coupled lasers as in schematic Fig. 1(b). The BER of the 

MCPF procedure between a pair of parties, p, and 

between a party and the attacker, q, is calculated assuming 

uncorrelated decoded bits by the parties and by the 

attacker. The colored regions (blue or red) indicate a 

necessary condition for the failure of an attacker before 

the reconciliation procedure, PAC<PAB . The region where 

an attacker cannot succeed in recovering the key, even 

when using the leakage of information of the 

reconciliation procedure, is indicated in red.  

A reconciliation procedure sets PAB=1, resulting in 

identical random bit sequences for A and B. The leakage 

of information in the reconciliation procedure for the case 

PAC< PAB, can be also expected to be usable for enhancing 

PAC, but it cannot be boosted to one. The exact bound for 

when A and B can be considered secure from attack by C 

is given by  

)5()S|S,I(S+)S,I(S> )S,I(S ABCACBA
 

where I(SC,SB) and I(SC,SB|SA) stands for the mutual 

information and the conditional mutual information [14], 

respectively, and SA, SB and SC stand for the binary 

sequences before the reconciliation procedure. Equation 

(5) states that in case the minimum required exchange of 

information for the reconciliation procedure, 1-I(SA,SB), is 

less than the total missing information C possesses about 

SA and SB, 1- I(SC,SA)-I(SC,SB|SA), the attacker fails to 

recover the random bits sequence. Condition (5) as a 

function of p and q is calculated using symbolic 

mathematics and depicted by the red region of Fig. 4(a). 

In the above-mentioned example the point 

(p=0.07,q=0.15) lies in the red region of Fig. 4(a) and thus 

indicates that a secure synchronization of two RBGs over 

a public channel is achieved. The case of correlated 

decoded bits is also found to be secure [8]. 
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2.3. Synchronization of three RBGs 

 

Key-exchange protocols based on number theory are 

fundamentally limited to only two users [1]. Our proposed 

protocol, however, can be generalized to secure 

synchronization of RBGs among a small network of three 

mutually coupled lasers, as shown in Fig. 1(b). Each party 

starts with a given public random binary sequence. In case 

the estimated two received bits, using MCPF procedure, 

are equal to the party’s transmitted bit, the corresponding 

bit in the public random binary sequence is set to the 

value of this common bit. An attacker represented by the 

fourth, middle laser in Fig. 1(b), is assumed to be capable 

of noiseless amplification of the transmitted signal and 

eavesdropping to each of the three communicating signals 

and to estimate the transmitted bit using a CPF procedure.  

     The average number of identical bits between any pair 

of (SA, SB, SC) is calculated using symbolic mathematics 

and is given by P=1-p+7/4p
2
-3/2p

3
+1/2p

4
 whereas 

between the attacker and a party Pattacker=1-p/2+p
2
/4-(3/4-

2p+5/4p
2
)q+(3/4-5/2p+2p

2
)q

2
-(1/4-p+p

2
)q

3
 [8]. The region 

where P>Pattacker is denoted by the colored (both blue and 

red) regions of Fig. 4(b), indicating a similar lower bound 

as for the two lasers case, Fig. 4(a). The exact condition 

for a secure synchronization of three RBGs is given by  

)6(0>1+)S|S,I(S-

)S,2I(S-)S,S|S,I(S+)S|S,I(S+)S,I(S

BCA

BABACDCBDAD
 

 

Fig. 5. Venn diagram for the mutual information of three 

communicating parties. The entropy of a transmitted bit of 

each party is represented by a circle normalized to 1. T3–

common information for all parties, T2–common 

information for each pair of parties and 1-T1 stands for the 

independent information of each party. 

 

where SD is the binary recovered sequence of the attacker. 

This inequality was derived using a Venn diagram, Fig. 5. 

1-T1=1-I(SA,SB)-I(SA,SC|SB) stands for the independent 

information of one party, T2= I(SA,SC|SB) stands for the 

common information of two parties only and T3=T1-2T2 is 

the common information for the three parties. The total 

entropy of the three parties is 3+T2-2T1, hence the 

required exchange of information in the reconciliation 

procedure is 2+T2-2T1. Failure of the attacker requires that 

the leakage of information in the reconciliation procedure 

plus the mutual information of the attacker with the three 

parties, I(SD,SA)+I(SD,SB|SC)+I(SD,SC|SA,SB), is less than 1 

and results in inequality (6). The region of secure 

synchronization is indicated by the red region of Fig. 4(b) 

and is limited by p ≲ 0.1 for q→0.5. Is it realistic to create 

such a gap between the BER of the parties and the 

attacker? Simulation results, averaged over transmission 

of 20,000 bits, with ==60 ns
-1

 for the parties indicate 

p=0.025, whereas an exhaustive search of the attacker 

indicates that the minimum q=0.145 is obtained for 

attacker=50 ns
-1

 and attacker=120 ns
-1

. Fig. 4(b) shows that 

(p=0.025,q=0.145) is in the red region, hence a secure 

synchronization of three RBGs over a public channel is 

achieved. 
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