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Extended Abstract

We establish a connection between the spectral theory
of the Koopman operator and the solution of the Hamil-
ton Jacobi (HJ) equation. The HJ equation occupies a cen-
tral place in system theory, and its solution is of interest
in various control problems, including optimal control, ro-
bust control, and input-output gain analysis. The HJ equa-
tion is a nonlinear partial differential equation, and its so-
lution is at the heart of a data-driven reinforcement learn-
ing problem. The Koopman operator from the ergodic the-
ory of dynamical system provides a linear representation of
nonlinear system dynamics by lifting the system from the
state space to the function space. The linear nature of the
Koopman operator presents an opportunity to analyze the
nonlinear dynamics through the spectrum, i.e., eigenvalues
and eigenfunctions of this operator. The eigenfunctions and
eigenvalues form the system’s natural invariant and provide
a diagonal and linear representation of the nonlinear dy-
namics in the Koopman eigenfunction coordinates. Apart
from providing linear and diagonal representation of the
nonlinear system, the Koopman eigenfunction can also be
used in the characterization of the stable and unstable man-
ifolds. The stable and unstable manifolds of the nonlinear
system can be characterized in terms of the zero-level sets
of the Koopman eigenfunctions with unstable and stable
eigenvalues, respectively.

It is well known that one can associate a Hamiltonian
system with the HJ equation. The solution of the HJ
equation is intimately connected with the Hamiltonian sys-
tem and can be obtained using the so-called Lagrangian
submanifold of the Hamiltonian system. The main con-
tribution of this work is in exploiting the spectral prop-
erties of the Koopman operator for the construction of
Lagrangian submanifolds. We provide two different ap-
proaches for the construction of Lagrangian submanifolds.
Our first approach uses Koopman eigenfunctions to decom-
pose the Hamiltonian dynamical system associated with the
HJ equation into an integrable and non-integrable form. As
a result, the integrable part of the Hamiltonian system is
resolved exactly, and the non-integrable part is approxi-
mately to construct the Lagrangian submanifold. The main
highlight of this construction is that the Lagrangian sub-
manifold is expressed as the function of the eigenfunction
of the Koopman operator corresponding to the uncontrolled
dynamical system. Hence, our first approach is ideal for the
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data-driven approximation of the HJ solution with applica-
tion to data-driven optimal and robust control design for
nonlinear systems.

In our second approach, we rely on the Koopman-based
lifting of the Hamiltonian dynamical system to approx-
imate the stable manifold and Lagrangian submanifold
of the Hamiltonian system using the principal eigenfunc-
tions of the Koopman operator. We present a convex
optimization-based approach for the computation of the
Koopman principal eigenfunctions. These eigenfunctions
are then used in the approximation of the Lagrangian sub-
manifold. We show that our proposed method for the ap-
proximate solution of the HJ equation in terms of the Koop-
man spectrum provides a natural extension of existing re-
sults from linear system theory to nonlinear systems. In
particular, the Riccatti solution based on the linearization
of the HJ equation can be obtained as a specific case of our
proposed construction corresponding to the linear choice of
basis function used in the lifting of the Koopman operator.

We compare the procedures for the approximate solution
of the HJ equation based on the Koopman spectrum. We
show that the second procedure based on Koopman lifting
of the Hamiltonian dynamical system is more accurate than
procedure one. However, the second procedure requires us
to compute the eigenfunction of a larger, 2n, dimensional
dynamical system compared to n dimensional dynamical
system for procedure one, where n is the state space di-
mension of the dynamical system. Finally, we discuss the
implication of the developed framework for solving opti-
mal control, robust control, and reachability problem in the
control dynamical system. In the following, we present
simulation results for comparing optimal control obtained
by solving the Riccatti equation based on linearized dy-
namics, i.e., linear quadratic regulator (LQR) control, pro-
cedure 1, procedure 2, and true optimal control.

Example

Consider the following example of 2D control oscillator
system.

ẋ1 = x2 ẋ2 = −x1 + 0.105x2 +
1
2

x2
2x1 + 1.1x1x2 + (1.1+ x1)u

(1)
The objective is to design an optimal control with quadratic
state cost and control cost i.e., x2

1 + x2
2 + u2. The optimal

control for this problem can be computed analytically and
is of the form u∗ = −(1.1+ x1)x2 and the optimal cost func-
tion is V∗ = x2

1 + x2
2. The system was discretized using

– 217 –

2022 International Symposium on Nonlinear Theory and Its Applications,
NOLTA2022, Virtual, December 12-15, 2022

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.

https://orcid.org/0000-0002-0483-4921


Euler method to obtain one-step time-series data with 1e4

initial conditions. Fig. 1. presents a comparison between
linear part of the eigenfunctions and the approximate non-
linear eigenfunctions. Similarly, in Fig. 2 we show the
comparison of the feedback controller using LQR, Proce-
dure 1, and Procedure 2. We notice that the optimal control
obtained using procedure 2 shows a close match to the true
optimal control. Comparison of the closed-loop trajecto-
ries for (−1.8, 1.8) initial condition is shown in the Fig. 3.
In Fig. 4, we plot the control inputs and performance in
terms of the cost. The optimal cost and the obtained using
Procedure 1 and Procedure 2 shows a good match.

Figure 1: Nonlinear eigenfunctions, ϕ1, ϕ2 and the linear
part of the nonlinear eigenfunctions w1,w2.

Figure 2: Comparison of optimal feedback controllers ob-
tained from LQR solution uLQR, the true optimal control
u⋆(x), procedure 1 uP1 (x), and procedure 2 uP2 (x).
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Figure 3: Comparison of state trajectories with LQR con-
trol input, Procedure 1, and Procedure 2.
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Figure 4: Comparison of control inputs, and empirical cost
function with LQR control input, procedure 1, and proce-
dure 2.
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