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Abstract—The existence and uniqueness theory for
smooth Koopman eigenfunctions, in the vicinity of an ex-
ponentially stable equilibrium or limit cycle, is described
in the author’s talk. This document is an attempt to briefly
convey the flavor of some of these results and to illustrate,
for equilibria, some of these in a simple setting.

1. Introduction

To the best of the author’s knowledge, the state-of-the-
art existence and uniqueness theory for Ck Koopman eigen-
functions (1 ≤ k ≤ ∞), in the vicinity of an exponentially
stable equilibrium or limit cycle, was established in [1].
Simplified statements of these results and additional obser-
vations are contained in [2]. This document concentrates
on the case of equilibria.

2. Principal Koopman eigenfunctions

A function is Ck if it is continuous and has continuous
partial derivatives up to order k (0 ≤ k ≤ ∞). Consider an
ordinary differential equation (ODE)

ẋ = f (x), x ∈ Rn (1)

where f :Rn → Rn is C1.
Given an open set U ⊂ Rn that is forward invariant for

f , a Koopman eigenfunction on U is a function ψ: U → C
satisfying, for some fixed λ ∈ C,

∀t ≥ 0:ψ(x(t)) = eλtψ(x(0)) (2)

along all trajectories t 7→ x(t) of f with initial condition
x(0) ∈ U.

Assume now that U contains an equilibrium x∗, f (x∗) =

0, and that x∗ is asymptotically stable with U contained in
its basin of attraction. A Koopman eigenfunction ψ: U →
C is a principal eigenfunction if ψ ∈ C1, ψ(x∗) = 0, and the
derivative dψ(x∗) , 0 at x∗ is nonzero.

It is easy to show that, if ψ is a principal eigenfunc-
tion satisfying Eq. 2, then dψ(x∗) is a left eigenvector of
the (complexified) Jacobian matrix Dx∗ f of f with eigen-
value λ. Thus, given an eigenvalue λ ∈ C of Dx∗ f , natural
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questions arise: when do principal eigenfunctions satisfy-
ing Eq. 2 with λ exist? When are they uniquely determined
by λ (up to scalar multiplication)? What is their level of
smoothness?

Sufficient conditions for existence of C1, C1≤k≤∞, and Cω

(real-analytic) such principal eigenfunctions correspond-
ing to all eigenvalues of Dx∗ f are readily derived from
the standard Hartman, Sternberg, and Poincaré-Siegel lin-
earization theorems, respectively. (The more well-known
Grobman-Hartman C0 linearization theorem does not pro-
duce C1 eigenfunctions, and principal eigenfunctions are
required to be C1.) However, for individual eigenvalues
λ of Dx∗ f , existence of a corresponding C1≤k≤∞ principal
eigenfunction can be guaranteed under weaker conditions
established in [1]. The level k of eigenfunction smoothness
depends on properties of the eigenvalues of Dx∗ f and on
the level of smoothness of f . The proof uses a contraction
mapping, which also yields guarantees of convergence of
iteration schemes (including Laplace averages) to principal
eigenfunctions.

However, the question of conditions for uniqueness of
principal eigenfunctions is arguably more interesting since,
until recently, much less appeared to be known, except for
Cω eigenfunctions of Cω vector fields [3]. Uniqueness con-
ditions were recently obtained for C1≤k≤∞ principal eigen-
functions in [1]. Like the existence conditions, these also
involve properties of the eigenvalues of Dx∗ f and the level
of smoothness of f . For an application of the uniqueness
results of [1] to dynamical systems having certain sparsity
structures, see [4, Thm 4.8, Cor. 4.9]

Finally, all C∞ Koopman eigenfunctions—not only the
principal ones—were classified for generic [2] C∞ f in [1]:
in this situation, every C∞ Koopman eigenfunction on a
forward invariant set U is a finite sum of finite products of
principal eigenfunctions on U.*

*In [1, 2] it was assumed for simplicity that the open set U is equal to
the basin of attraction, but the results therein straightforwardly extend to
any forward invariant open U contained in the basin. Also, the existence
and uniqueness results described in the present document were actually
obtained in [1] for general linearizing semiconjugacies—of which eigen-
functions are a special case—which are Ck,α

loc , i.e. Ck with locally α-Hölder
k-th partial derivatives, 0 ≤ α ≤ 1. One motivation for the refined Ck,α

loc
smoothness considerations is that they make the principal eigenfunction
existence and uniqueness results in [1] fairly close to optimal. Finally, the
results of [1] also apply to discrete-time dynamical systems.
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3. Uniqueness and existence examples

First consider the linear ODE

ẋ = −x, ẏ = −ky (3)

on R2, where k ≥ 2 is an integer. Here x∗ = (0, 0) is a
globally exponentially stable equilibrium point. Observe
that both ψ1(x, y) B y and ψ2(x, y) B y + xk are polynomial
(hence Cω, hence C∞) principal eigenfunctions satisfying
Eq. 2 with λ = −k, and ψ1 and ψ2 have the same deriva-
tive at x∗. Hence over any forward invariant open set U
(e.g. U = R2), even polynomial principal eigenfunctions
are not uniquely determined up to scalar multiplication by
their derivatives at x∗.

This nonuniqueness is made possible since there is reso-
nance between the system eigenvalues, which means that it
is possible to write one eigenvalue as a linear combination
of the others with nonnegative integer coefficients summing
to at least 2 (cf. the displayed equation in [2, Prop. 11.(1)]).
In this particular example, this is because −k = k · (−1) and
k ≥ 2 by assumption.

Next consider the linear ODE

ẋ = −x, ẏ = −ay (4)

on R2, where a > 1 is not an integer. Here x∗ = (0, 0)
is again a globally exponentially stable equilibrium point.
Because a is not an integer, resonance is no longer an issue.

However, observe that both ψ1(x, y) B y and ψ2(x, y) B
y + |x|a are Cbac principal eigenfunctions satisfying Eq. 2
with λ = −a, where b·c is the floor (“round down”) func-
tion, and ψ1 and ψ2 have the same derivative at x∗. Hence
over any forward invariant open set U (e.g. U = R2), Cbac

principal eigenfunctions are not uniquely determined up to
scalar multiplication by their derivatives at x∗. However,
the results of [1] imply that such principal eigenfunctions
are uniquely determined in this way if they are Cbac+1, i.e.
one degree smoother. Moreover, the principal eigenfunc-
tion ψ2(x, y) B x satisfying Eq. 2 with λ = −1 is the unique
such C2 principal eigenfunction up to scalar multiplication.

These two uniqueness claims are guaranteed to hold be-
cause of nonresonance and because of the following asym-
metric spectral spread property: when both −1 and −a are
multiplied by (bac + 1), numbers smaller than −a are ob-
tained; and when both −1 and −a are multiplied by 2, num-
bers smaller than −1 are obtained, since a > 1 (cf. the first
displayed inequality in [2, Prop. 11]).

Now suppose that Cbac+1 nonlinear (and also linear, if de-
sired) terms are added to Eq. 4 without changing the eigen-
values of the system linearized at x∗. Then the results of [1]
imply that, on any forward invariant open neighborhood U
of x∗, there still exists a pair of Cbac+1 principal eigenfunc-
tions ψ1 and ψ2 respectively satisfying Eq. 2 with λ = −a
and λ = −1. Moreover, ψ1 is the unique Cbac+1 such func-
tion, and ψ2 is the unique C2 such function. Additionally,
these eigenfunctions can be constructed via limiting proce-

dures involving the flow of the nonlinearly perturbed ODE
(see Eq. (26) and Rem. 14 of [1]).

All statements in this section can be justified using (Foot-
note * and) the simplified version [2, Proposition 11] of the
more general result [1, Proposition 6]. The examples above
are adapted from [1, Example 2], which contains more de-
tails and nuances.

Acknowledgments

This document was underwritten by ONR N00014-16-
1-2817, a Vannevar Bush Faculty Fellowship sponsored by
the Basic Research Office of the Assistant Secretary of De-
fense for Research and Engineering. The author would
like to thank the organizers of the NOLTA2022 special ses-
sion: “Recent advances in the Koopman operator frame-
work: Theory, numerics, and applications” for their invita-
tion, and the anonymous reviewers for useful comments.

References

[1] M. D. Kvalheim and S. Revzen, “Existence and
uniqueness of global Koopman eigenfunctions for sta-
ble fixed points and periodic orbits,” Physica D,
vol. 425, pp. 132959, 2021.

[2] M. D. Kvalheim, D. Hong, and S. Revzen, “Generic
properties of Koopman eigenfunctions for stable fixed
Points and periodic orbits,” Physica D, vol. 54, iss. 9,
pp. 267–272, 2021.
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