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Abstract—Dilute ferrofluids combine the hydrody-
namic properties of Newtonian liquids with super-
paramagnetic response to external magnetic fields. For
a cylindrical ferrofluid jet with a current-carrying wire
along its axis the Rayleigh-Plateau instability may be sup-
pressed due to the magnetic body force. The resulting axis-
symmetric surface deformations show a linear dispersion
relation similar to shallow water waves. Accordingly, the
weakly non-linear regime is characterized by a Korteweg-
de Vries (KdV) equation which can be derived using mul-
tiple scale perturbation theory. With the coefficients of
this KdV-equation depending on the magnetic field strength
both dark (depression) and bright (elevation) solitons are
possible. These predictions have recently been verified in
experiments, and also in a fully nonlinear numerical analy-
sis.

1. Introduction

Solitons have fascinated experts and laymen alike ever
since their spectacular discovery by Scott Russell in 1834
[1]. By an intricate balance between dispersion and non-
linearity they move with constant speed and retain their
shape even after mutual collisions. Although discovered in
hydrodynamic systems they occur in a variety of settings
reaching from non-linear optics, plasmas, crystal lattices,
spiral galaxies to rigorous solutions in general relativity [2].

A particularly popular example for a soliton is provided
by the solution of the Korteweg-de Vries equation [3]

∂tu(x, t) + 6u(x, t)∂xu(x, t) + ∂3
xu(x, t) = 0 . (1)

Here u(x, t) denotes the surface elevation of a liquid in a
shallow duct as function of the space coordinate x along
the duct and time t. The one-soliton solution of (1)

u(x, t) =
c
2

sech2
( √

c
2

(x − ct)
)

(2)

describes a hump of constant shape moving to the right
with velocity c. Eq. (1) results from a weakly non-linear
analysis of surface waves if to linear order the system un-
der consideration admits travelling wave solutions of the
form u ∼ ei(kx−ωt) with dispersion relation

ω = c0k + O(k3) for k → 0 , (3)

where c0 denotes the phase velocity. As is well known [4],
surface waves on shallow water meet this requirement.
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Figure 1: Schematic plot of the setup. A current-carrying
wire is surrounded by a cylindrical ferrofluid with mag-
netic susceptibility χ and density ρ (region 1©). Region 2©
is a nonmagnetic medium of negligible density treated as
vacuum. The deflection of the surface from the cylindrical
shape with radius R is denoted by ζ(z, θ, t). The vector n
denotes the normal on the free interface R + ζ(z, θ, t).

In the present contribution we point out that the same
holds true for axis-symmetric surface modulations of a fer-
rofluid jet under the influence of an azimuthal magnetic
field resulting from a current flowing along the axis of the
jet [5]. The general setup is shown in Fig. 1. Ferrofluids are
stable suspensions of ferromagnetic nano-particles in New-
tonian liquids and behave superparamagnetically in exter-
nal magnetic fields [6]. A standard linear stability anal-
ysis of the cylindrical surface reveals that for sufficiently
high current J the body force from the magnetic field sup-
presses the Rayleigh-Plateau instability of the jet [7, 8]
and allows for travelling surface waves with dispersion (3).
This in turn paves the way to derive a KdV equation for
the weakly-nonlinear regime by multiple scale perturbation
theory.

2. Linear stability

Let us list the basic assumptions of our theoretical anal-
ysis, for a detailed discussion see [5]. The current-carrying
wire is thin, long and straight, the ferrofluid is incompress-
ible, inviscid, and has density ρ, surface tension σ, and
constant magnetic susceptibility χ. It is surrounded by a
vacuum. We neglect gravity, and assume the flow to be
irrotational.

In cylindrical coordinates (r, θ, z) the magnetic field is

H =
J

2πr
eθ . (4)
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Figure 2: Schematic plot of a bright (a) and a dark (b) soli-
ton as given by eq. (11).

The corresponding magnetic force, Fm = µ0(M∇)H attracts
the ferrofluid radially inward. Here µ0 denotes the suscepti-
bility of the vacuum and M = χH the magnetization of the
fluid. Deviations from the cylindrical equilibrium shape of
the ferrofluid with radius R are parametrized by the func-
tion ζ(z, θ, t).

If we measure distances in units of R and times in units
of

√
R3ρ/σ the magnetic field strength is characterized by

the dimensionless Bond number

Bo =
µ0χJ2

4π2σR
. (5)

We use the ferrohydrodynamic Bernoulli equation together
with the magnetostatic Maxwell equations and their respec-
tive boundary conditions [6] to describe the coupling be-
tween the flow of the ferrofluid and the corresponding mag-
netic field configuration.

Linearizing these equations for small axis-symmetric
surface deflections ζ(z, t) � 1 of the form

ζ(z, t) ∼ exp
(
i(kz − ωt)

)
(6)

one gets the dispersion relation [7, 8]

ω2(k) = k
I1(k)
I0(k)

(
Bo − 1 + k2

)
, (7)

where In denotes the Bessel function of index n with imag-
inary argument. In the long-wavelength limit, k → 0, this
gives rise to

ω(k) =

√
Bo − 1

2
k
(
1 − 1

16
Bo − 9
Bo − 1

k2
)

+ O(k5) . (8)

Consequently, for Bo > 1 the Rayleigh-Plateau instability
is suppressed and cylindrical surface waves with dispersion
relation (3) may propagate along the jet.

3. Cylindrical solitons

On the basis of the results of the linear analysis one may
now explore the interplay between the nonlinearity repre-
sented by higher order terms in ζ and the dispersion de-
scribed by the O(k3) term in (8). This is conveniently done

by multiple-scale perturbation theory; for details of the cal-
culation see [5]. As a result one obtaines for the time evo-
lution of the surface deflection the equation

∂tζ + c0∂zζ + c1 ζ∂zζ + c2 ∂
3
z ζ = 0 . (9)

A similar equation was also obtained in [9]. The coeffi-
cients

c0 =

√
Bo − 1

2
, c1 =

2Bo − 3
4c0

, and c2 =
Bo − 9
32c0

(10)
all depend on the magnetic field strength Bo and hence,
by changing the current in the wire, different regimes of
the KdV equation may be investigated. The one-soliton
solution of (9) is given by [9, 5]

ζ(z, t) =
3c
c1

sech2
(√

c
4c2

(z − (c + c0)t)
)
. (11)

where c � 1 is a free constant with the same sign as c2.
For 3/2 < Bo < 9 we have c < 0 and c1 > 0 and therefore
(11) describes a dark or depression soliton with negative
amplitude. For 1 < Bo < 3/2 and Bo > 9 the amplitude
is positive and (11) respresents a bright or elevation soliton
which is much more common in hydrodynamic systems.
Fig. 2 provides two respective examples.

4. Experimental verification

The experimental observation of the described solitons
is non-trivial due to several complications. To realize zero
gravity the ferrofluid column has to be surrounded by a
non-magnetic liquid of the same density. However, then
the hydrodynamics of this fluid has to be treated as well.
Moreover, the above theoretical analysis assumes an invis-
cid fluid whereas real ferrofluids have appreciable viscosity
resulting in a damping of all waves. For realistic parame-
ter values the current J needs to be of the order of 100 A
requiring a special cooling of the wire. Therefore, the as-
sumption of a zero diameter for the current-carrying wire
will be rather unrealistic.

Despite these (and other) problems cylindrical solitons
of the discussed type have been observed recently in care-
ful experiments [10]. First, the velocity and dispersion re-
lation of linear waves were shown to be in agreement with
the theoretical analysis. Then, by choosing the appropriate
values of the current J depression as well as elevation soli-
tons were observed. By a proper rescaling of the amplitude
to account for the dissipative losses due to viscosity their
shape was found to be well described by eq. (11), cf. Fig 3.

5. Fully nonlinear analysis

Very recently a thorough numerical analysis of the com-
plete set of nonlinear equations describing the ferrohydro-
dynamics of the setup shown in Fig. 1 was performed [11].
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Figure 3: Experimental profiles of depression (top) and el-
evation (bottom) surface solitons shown by the crosses to-
gether with the scaled theoretical result given by eq. (11)
shown as lines (from [10]).

The results of the weakly-nonlinear analysis discussed
above were reproduced and extended into the region of
strong nonlinearity. Moreover, in addition to the solutions
accessible to the perturbative treatment of [5] new solu-
tions were found that branch off discontinously from the
uniform jet. Also, the situation with a non-zero radius of
the current-carrying wire was treated. Given that in the ex-
periments of [10] the radius of the wire was about 2/5 of
the radius of the jet this is an important qualification of the
results. Comparison between theory and experiment im-
proves when the non-zero radius of the wire is taken into
account. On the other hand, some experimental findings
need a critical reinterpretation (for details see [11]).

6. Conclusion

Axissymmetric Korteweg-deVries solitons on the cylin-
drical surface of ferrofluid jets pose many interesting prob-
lems in non-linear ferrohydrodynamics, experimentally as
well as theoretically and numerically. In the experiment
the properties of the solitions can be tuned by changing the
magnetic field, e.g., both elevation and depression waves
may be studied with the same setup. On the theoretical
side the effects of the outer fluid and the influence of vis-
cous dissipation are challenging projects for future investi-
gations.
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