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Abstract–We report on a possible method for realizing 
logic operations in a micro-mechanical cantilever array 
based on the timed application of a lattice disturbance to 
control the properties of intrinsic localized modes (ILMs).  
The application of a specific inhomogeneous field destroys 
a driver-locked ILM, while the same operation can create 
an ILM if initially no-ILMs  exists. Logic states "1" and 
"0" correspond to "present" or "absent" ILMs. 
 
1. Introduction 

In a micromechanical array, a localized nonlinear 
excitation called an intrinsic localized mode (ILM) can be 
generated.[1] It is stable at a lattice site, and can be moved 
from one place to another by introducing a mobile 
impurity in the array.  The interaction between an ILM 
and an impurity mode makes such motion possible. 
Because of damping such ILMs are usually driven by a cw 
oscillator to maintain constant amplitude and the 
oscillation frequency of the ILM is locked to the driver. 
So far, we have succeeded in seeding, annihilating, 
repelling and attracting driver-locked ILMs by using 
impurities.[1] Dynamic control is also possible using a 
soliton when two bands are available, one for ILMs and 
the other for the soliton.[2]   

For a nonlinear array with hard nonlinearity a 
stationary ILM can be created above the band states. 
When an impurity mode frequency is above the band state 
frequencies but below the ILM frequency the ILM is 
attracted to it. (See Ref. 1, Fig. 9.) Two sets of frequency 
differences are important for the impurity control of the 
ILM. These are between the driver and the highest 
frequency pure-band state dm d mω ωΔ = − and the 
frequency difference between the driver and the impurity 
mode di d iω ωΔ = − .  Since the ILM is locked to the driver 
it is stable at the frequency shift dmΔ . When the ILM is 
near an impurity mode and 0 di dm< Δ < Δ , attraction 
occurs. In that case, the ILM releases some amplitude and 
becomes trapped at the impurity site. When the impurity is 
removed, the ILM amplitude is recovered. 

A sudden application of an impurity may end up un-
locking the driver from the ILM and it will disappear in an  
energy dissipation relaxation time. To maintain the locked 
ILM its change in amplitude should occur over a longer 
time interval than the damping time. 

In this report we show with simulations that an 
inhomogeneous, harmonic force constant, time dependent 
perturbation applied to a nonlinear lattice can be used to 
control ILMs that are locked to a driver. Such 
manipulation produces logic operations. All logic 
operations such as addition, subtraction, etc can be made 
from basic sets of gates called complete sets. Complete 
sets are (i) NAND and (ii) NOR gates, but (iii) the 
combination of OR and EXOR gates, of interest here, also 
form a complete set.[3] By application of the disturbance 
to the micromechanical cantilever array an inverter and 
EXOR-NOT operation are demonstrated.  

 
2. Inversion 

Our micro-mechanical array simulation model is based 
on the experimental observations for cantilever arrays 
described in Ref. [1]. It makes use of the lumped element 
model equation for cantilever i: 
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where  im  is the mass, τ is a life time, 2Oik and 4Ok are 

onsite harmonic and quartic spring constants, ( )
2

j
Ik is a 

harmonic intersite spring constant of j-th nearest neighbor, 
4Ik is a quartic intersite spring constant, α is an 

acceleration , and dω is the driver frequency. The array is 
made from an alternative sequence of long and short 
cantilevers to insure coupling to the optic branch with the 
uniform acceleration force provided by a PZT transducer. 
Thus, im and 2Oik  are alternatively repeated along the 
array. The nonlinear components 4Ok and 4Ik  are both 
positive and 4 40Ik k . The ILM is generated above the 
highest linear resonant band frequency (137.1kHz). The 
center of the ILM is at the short cantilever site (odd 
number site in the simulation). 

 The lattice disturbance is introduced as a time and 
spatial dependence of the onsite harmonic spring constant 
over a fixed region. The spatial pattern to be applied to the 
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array is shown in Fig. 1(a). It extends over a third of the 
lattice and the maximum increase in the onsite harmonic 
spring constant is 10%. As shown in Fig. 1(b) at the time 
of maximum application the top 16 modes range from 
extended island modes at low frequencies to local modes 
at high frequencies.  

 Figure 2(a) shows a simulation result for the time 
dependence of a locked ILM in the presence of the time-
dependent spatial disturbance. The driver frequency is 
fixed at 139.0 kHz, so 1.9 kHzdmΔ = while 

0.05 kHzdiΔ = at the disturbance maximum. After turning 
the disturbance on instantaneously a localized pulsing 
structure appears at its center, indicating an amplitude 
modulation (AM) of the trapped ILM. Upon reducing the 
strength of the perturbation to 0 in a time characterized by 
the ILM relaxation time, τ , one ILM remains in the 
system. The presence or absence of the ILM depends 
crucially on the phase of its AM modulation at the time of 
the removal of the disturbance. Fig. 2(b) shows that if the 
removal of the disturbance is one half period AM earlier 
than for frame (a), no ILM remains.  At least three cycles 
of  "presence" and "absence" of ILMs are seen in 
simulations when the removal time is scanned with 
respect to the AM period. The difference in the end results, 
i.e., ILM or no ILM, is observed in the time region where 
the pulsing structure is clearly seen.   

Figure 2(c) shows an ILM at site 87 interacting with a 
disturbance whose growth and removal time is the same, 
~ τ . In this case the initial ILM is attracted to island 
modes of larger and larger amplitude shifting it towards 
the local mode at center of the disturbance (site 111). 
Notice the interesting result that the ILM crosses the 
disturbance center due to its translational inertia and 
oscillates about that “equilibrium” position.  At the same 
time, the AM of the nonlinear mode at the disturbance 
center begins to grow in amplitude. This nonlinear mode 
is an incipient ILM that stabilizes once the disturbance is 
removed, similar to that shown in Fig. 2(a). At a later time 
(around 6000~7000 periods) the phase of the AM is 
shifted by 180 degrees compared with it value in Fig. 2(a). 
Since the phase is inverted, the end result is also inverted 
even if the removal time interval of the disturbance is 
unchanged. It should be noted that the combination of the 
translation and the AM with respect to the time 
disturbance causes the results shown in Fig. 2(c) to 
depend to some extent on the initial relative location of 
the ILM. 

The first two frames in Fig. 2 have also been obtained 
in another set of simulations where the time dependent 
pattern shown at the bottom of Fig. 2(c) is used. In this 
case the time dependence of the disturbance is the same in 
frames (a) and (c) with its finish shifted by 1/2 period in 
(b). As expected the AM patterns are the same between t = 
4000~6000 periods in (a) and (b), while the pattern is 
inverted in (c) as illustrated by the vertical arrows shown 
in all three frames. The 180 degree phase shift of the 
amplitude modulation in (c) causes the end result to be 

reversed from that in (a). It is the presence and location of 
the initial ILM that changes the result. Assigning the 
existence and absence of ILMs as “1” and “0”, the 
simulations described here demonstrate inverter action in 
the array. 

 

 
 
3. EXOR-NOT operation 

Figure 3(a) shows that when the initial ILM is located 
on the symmetrically opposite side of the disturbance, at 
site 135, and the same time dependence of Fig. 2(c) is 
applied, the AM of the ILM is inverted. When two ILMs 
are placed at sites 87 and 135 then at the end of the 
perturbation cycle one ILM remains as shown in Fig. 3(b).  
In this case, the smooth AM observed in Fig. 2 (a) is more 
difficult to see.  
 

Figure 1.  (a) Spatial inhomogenous pattern applied to 
manipulate ILMs. The disturbance is characterized as 
the ratio of the on-site impurity spring constant to the 
pure one. (b) Linear eigenvectors from the highest 
resonance frequency down to the 19-th mode. The top 
16 modes show a variety of localization behavior. 
Extended band modes begin at the 17-th mode. 
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We can make a truth table for the triangular 

disturbance operation.  Inputs are the initial existence or 
absence of ILMs at sites 87 and 135. The output is site 111, 
the peak of the impurity pattern in Fig. 1.  The results 
from Figs. 2 and 3 are summarized in Table I. Output "1" 
is obtained for inputs "00" or "11". The operation is 
expressed as AB AB+ and it is EXOR-NOT. 

If the logic “0” results for two ILMs placed at other 
symmetric distances with respect to the disturbance center  
then logic operations are still possible as long as the "0" 
occurs with high reliability.  In this case, the 3rd column, 
last row of the truth table will be changed to "0" and the 
operation expression will be ( )AB A B= + , that is, a NOR 
gate. For all operations observing a well-defined AM is 
most important. 
 
 
 

Figure 4.  Three inputs logic operation.  Spatial pattern 
and time dependence of the disturbance are the same 
for all cases. Only the initial conditions are different.

Table I.  Truth table of the logic operation. A and B are 
inputs at sites 135 and 87. Output site is 111. "1" and 
"0" mean existence and absence of ILMs. From this 
table, we can see that the logic operation AB AB+ is 
realized. It corresponds to the EXOR-NOT. 
 

A(135) B(87) Output(111) Figure
0 0 1 2(a) 
0 1 0 2(c) 
1 0 0 3(a) 
1 1 1 3(b) 

Figure 3.  EXOR-NOT logic operation.  (a) Initial ILM 
at site 135, shifted by 24 sites to the other side of the 
disturbance maximum. (b) Two simultaneous ILMs at 
site 87 and site 135 give rise to a single ILM after the 
perturbation is applied and removed. 

Figure 2. Simulated inverter logic in a 
micromechanical cantilever array. Dark region 
corresponds to high energy. The horizontal lines 
separated by a vertical dashed line identify the 
boundaries of the triangular disturbance. (a) One ILM 
is created from the no ILM state. (b) If the disturbance 
is removed a half AM period earlier than (a), see 
dashed line in (c), no ILM remains. (c) ILM at site 87, 
shifted by 24 units from the maximum, is destroyed by 
the lattice perturbation. The solid line shows the time 
dependence of disturbance used in (a) and (c). Vertical 
arrows indicates different times where energy has 
peaks in (a). 
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4. Three inputs 
Since the spatial width of the perturbation is much 

larger than the width of a single ILM, multiple ILMs can  
interact with this disturbance. Figure 4 provides such an 
example.  In Fig. 4(a) the initial ILM is placed at site 111 
(the center of the disturbance); afterwards no ILM remains.  
Figures 4(b) and 4(c) show two ILMs placed at site 111 
and site 87 (or 135); the end result is one ILM.  Figure 4(d) 
illustrates that the interaction with all three produces no 
ILMs.  Combining all of the results shown in Figs. 2, 3, 
and 4, the output is "1" only when two inputs are "1" and 
the remaining input is "0".  

Note that finding a unique dynamical path for the three 
input case may be relatively difficult compared to the 
condition for the two input logic operation where 
simulations nearly always end in a systematic way. If the 
process is too sensitive to the initial conditions, the result 
is largely controlled by noise. 
 
5. Discussion 

Two transient phenomena have been observed in the 
production or destruction of an ILM. The oscillation of the 
ILM around the point of maximum disturbance indicates 
the ILM has translational inertia. The other effect, the 
transient AM is more difficult to explain. 

For a linear oscillator the AM frequency is the 
difference frequency between the driver and the oscillator, 
i.e., 0.05  kHzdiΔ =  , but the observed AM oscillation 
frequency is ~0.14 kHz. In addition, the lifetime of the AM 
(~2300 periods) is longer than the damping time, τ~1200 
periods. Thus, the AM cannot be explained by a simple 
linear calculation, instead it must be strongly influenced by 
the nonlinear effect.   

Such AM has already been observed in the sideband 
spectrum of driver locked ILMs[4] and has been identified 
with a low frequency deformation mode of the ILM 
itself.[5] The oscillation parametrically receives energy 
from the main driver so this parasitic oscillation has a 
longer lifetime than for the linear case. The added 
translational component observed here may be the source 
of the large AM depth. 

Bistability of a driver locked ILM is a known property. 
[6] and such bistability is also known to occur for a 
Duffing oscillator. By using the ILM eigenvector and a 
transformation method described in Ref. [7] a Duffing 
model has been created with effectively the same 
parameters as used in the above simulations. Similar to the 
array case, locked and unlocked final states appear 
alternatively when the perturbation removal time is 
changed by 1/2 the AM period. Thus, one nonlinear 
oscillator with a fixed driver is sufficient to have both 
amplitude modulation and two end results, namely, locked 
and un-locked states. 

Even if amplitude oscillation and bistability are 
explained by the single nonlinear oscillator model, the 
multiple input operation demonstrated here requires many 
degrees of freedom. Since the end result is sensitive to the 

phase of the AM of the ILM, logic operations are possible 
as long as a method to modify its phase can be found.  
 
6. Summary 

Logic operations inverter and EXOR-NOT have been 
demonstrated in simulations involving a cantilever array. 
The triangular spatial perturbation operated off-center to 
the initial ILM state inverts the existence or absence of the 
ILM. The operation is explained by a phase shift of the 
AM produced by the attraction of the initial ILM(s) and 
the growing (or decaying) array of impurity modes 
produced by the time dependent perturbation.  Any kind of 
logic operations can be achieved by combinations of the 
inverter and EXOR-NOT. 

The operations shown here are based on the transient 
response AM together with the bistability of this Duffing-
like oscillator. Such a process also would be expected to 
occur in other kind of MEMS oscillator arrays.  Finally, 
such logic operations may be applicable to information 
processing, actuator arrays, and sensor arrays[8, 9].  
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