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Abstract—To solve the quadratic assignment problemseural network (HNN), has already been proposed [2]. In
(QAPs), two types of chaotic search methods have athis method, a firing pattern of HNN represents a solution
ready been proposed. In one method, mutual connegf the QAP. If we decide good synaptic weights of HNN
tion chaotic neural network (CNN), Hopfield-type CNNfor solving the QAP, we can obtain a good solution by de-
method is used, and a firing pattern of the CNN represengsent down-hill dynamics of HNN. However, this method
a solution of the QAP. For another method, execution afannot always get good performance because the states of
local search algorithm is control by the chaotic dynamicghe HNN get stuck at local minima.

In both methods, chaotic dynamics works to avoid local To avoid local minima, a method which injects chaotic
minima. To improve performances of the these methodgynamical noise into HNN for solving combinatorial op-
we have already proposed new methods which combingnization problems has been proposed [10, 11]. Using
chaotic dynamics and dynamical noise. As a result, wheffuctuation of chaotic time series as dynamical noise, the
small amount of dynamical noise is added to the CNN, thetate can escape from local minima. As another method for
solving performance is improved. However, we have ndjvoiding local minima, a method which uses chaotic neural
clarified yet why the small amount of dynamical noise is efnetwork (CNN) [3] has also been proposed [4, 5]. In the
fective to find good solutions and how to change the searckethod, chaotic dynamics of CNN works to avoid the local
ing states of the chaotic neural network by the dynamicahinima efectively.

noise. In this paper, to clarify the reason, we analyze the 14 realize more gective algorithm, we have already pro-

internal states of the neurons. posed a new method which uses both chaotic dynamics and
dynamical noise for avoiding local minima [7, 8]. As are-
1. Introduction sult, when the small amount of noise is added to CNN, the

) ) ) ~_ proposed method shows good performance. However, as
In the real world, various combinatorial optimizationthe amount of noise increases, the performance of the pro-
problems exist, for example, VLSI design, schedulingosed method becomes worse gradually. Namely, the small
problem, routing problem, facility layout problem, and soymount of noise leads tdfective search.
on. It is important to obtain optimal solutions of these As another approach for solving QAP, 2-opt algorithm
problems because operation costs can be reduced. Th‘aﬁ@en chaotic dynamics has been prolposed 6. This

Hiethod shows higher performance than the method which

ment problem (QAP) .[1]' The .QAP is described as fOHOWSiJsed Hopfield-type CNN. Alternatively we combined this
when twoN x N matrices, a distance matrix and a flow

Hix C . find tati hich minimi algorithm with dynamical noise. As a resut [9], when small
matnixt are given, find a permutatiopwnich minimizes = 5 5,y dynamical noise is added to the CNN. this method
a value of the following objective functioR(p):

also shows good performance,

NN Although, the methods which use chaotic dynamics and
F(p) = Z Z dijCpp(i)» (1) dynamical noise shows good performance [9, 4, 5], we have
=1 =1 not clarified yet why the small amount of dynamical noise

whered;; is the {, j)th element oD, p(i) is theith element is effective to find good solutions and how to change the
of p, Cpiyp(j) is the (i), p(j))th element ofC, andN is a searching states of the CNN by the dynamical noise. If
size of the problem. The QAP belongs to a class of NRhe reasons are identified, the algorithm can be improved
hard. Thus, it is required to develoffective approximate further. Thus, it is important to analyze influence of the
algorithms for finding near optimal solutions in a reasondynamical noise to the chaotic dynamics. In this paper,
able time frame. we investigated how to change value of internal state of
As an approximate algorithm, a method which uses thehaotic neurons depending on the amount of dynamical
mutual connection neural networks, or the Hopfield-Tankoise. From a result, temporal average and variance of
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the internal states of the takes almost same value when weuron with dynamical noise is defined as follows:
added small amount of dynamical noise in the Hopfield-
type CNN method. However, when the large amount of
dynamical noise is added to the CNN, the temporal a\X' :
erage and variance take quiteffdience value. On the ==
other hand, in the method which 2-opt algorithm driven by HOim(L = k) + Azim(1). ©6)
chaotic dynamics, the temporal average and the variance gfiere 1 is a weight of dynamical noise argh(t) is a se-
the neurons increase monotonously as the amount of Noiggence of dynamical noise added to the internal state of the
Increases. (i, mth neuron at time. In the method, both the chaotic
dynamics and the dynamical noise are used to avoid local
2. Method using both chaotic dynamics and dynamical minima.
noise A single iteration is defined as an update of all neurons
asynchronously. Then, the CNN generates solutions for
2.1. Hopfield-type Chaotic Neural Network with dy-  ypdating each neuron asynchronously. However, we can-
namical noise not always obtain feasible solutions from outputs of the
As an approximate algorithm for solving the QAP, aheurons because an output of th_e_chaotic_ neuron takes an
method which uses mutual connection chaotic neural néi'@l0g value. Then, we use the firing decision method [4]
work (CNN) [3] has already been proposed [4, 5]. Thvhich can always generat.e afeaglble solution for QAP. The
CNN model is constructed by chaotic neurons [3]. Thi®rocedure of the method is described as follows:

neural network model can qualitatively reproduce a chaotic 1 choose an index,m) whose internal statg, takes
dynamics observed in real neural membrane. To solve an  {he maximum value among all the neurons. Then, set

N-size QAP,N x N chaotic neurons are prepared in the  the ¢, m)th neuron as to firing state, and bet, = 1.
method. Thei( m)th neuron corresponds an assignment of

N N
t+1) = Kim® + > > WinjafVin) - @f (yim(t))

theith facility and themth city. 2. Set other neurons in thi#h row and themth column
An internal state of thei(m)th chaotic neuron of CNN to a resting state, and l&f = Ok # m) and Xy =
is defined as follows: 0( # i). Then, exclude neurons which have already
NN been selected in Steps 1 and 2.
Yim(t+1) = kyim(t) + ZZWim;jnf(an(t)) 3. Repeat Steps 1 and 2 until all states of neurons are
j=1 n=1 decided.
—af(yim(t)) + bim(1 - k), )

) ] 2.2. 2-opt Algorithm Driven by Chaotic Dynamics with
wherek is a decay parametey,is a strength parameter of Dynamical Noise

a refractory &ect, andf is an output function. Synaptic ) ] ]
weights between the,(m)th neuron and thej(n)th neuron  As another approach for solving QAP, a method in which
Winjn @and thresholds of thé,(m)th neurond;, are defined chaotic dynamics drives the 2-opt algorithm has been pro-

as follows: posed [6]. Although the 2-opt algorithm is one of the sim-
plest local search methods, this algorithm does not obtain
Wimjn = —2{A(1 - 6m)dij + Bém(1 - 6ij) good solutions because of local minimum problem. To
dijCm avoid local minima, 2-opt algorithm driven by chaotic dy-
+——1 (3)  namics has been proposed [6]. As a result, this method

q .
Om = —(A+B), 4) shows better performance than the method which uses mu-

tual connected chaotic neural network.
where A and B are positive constants;; is Kronecker's ~ Then, to improve the performance of this method, we
delta, andq is a normalization parameter. As an outpufave already proposed a method which combined 2-opt

function, asigmoidal function iS used: algorithm driVen by ChaOtiC dynamiCS and the dynamical
L noise [9]. The dynamics of the, ()th chaotic neuron is
described as follows:
fly) = m, (5)
Git+1) = pai(), @)
wheree is a gradient parameter of the sigmoidal function. Gitt+1) = K&Gji(t) - axi(t) + (1 - K)o, (8)
In the method, the chaotic dynamics works to avoid the
local minimum problem. whereéij(t) is a gain éect of the (, j)th neuron Aj(t) is a

To improve the performance of the method, we havdifference between value of the current objective function
already proposed a new method which injects dynamicahd that of a new objective function when tile and the
noise into the CNN [7, 8]. Thus, a term of the dynami-jth elements in permutatiop are exchanged by the 2-opt
cal noise is added to Eq.2. An internal state of thenth  algorithm. ¢;j(t) is a refractory &ect of the {, j)th neuron
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andg is a scaling parameter. The output of thg)th neu- From Fig. 2, if an amount of dynamical noise is large
ron at timet + 1, x;;(t + 1), is calculated as: (2 > 0.007), the temporal average becomes small and the
temporal variance becomes larger value. Then, the solving
Xj(t+1) = f(&;t+1)+4t+1)+yz;(t+1), (9 performance becomes worse sharply for large amount of
noise (Fig. 1). Itis consider that the dynamics of chaotic
wheref(y) = 1/(1 + 7<), z(t) is dynamical noise, andl  search is broken by large amount of noise. However, if
is a weight of the dynamical noise.tfj(t+1) > 1/2,the 2- gma|l amount of dynamics noisé « 0.007) is added to
opt algorithm which exchanges tfte and thejth elements  the CNN, both of temporal average and variance slightly in-

is applied. Each neuron is updated asynchronously. crease, and the performances are better than original CNN
(1 = 0.0). For the 2-opt algorithm driven by chaotic dy-

3. Experimental results namics with dynamical noise, both of temporal average and
temporal variance monotonically increase as the amount of

3.1. Performance with Respect to Weight of Noise noise increases (Fig. 3). Th&ects of dynamical noise to

e internal states of the CNN areferent from two meth-
To evaluate the performance of the proposed metho

[7, 8], we use the benchmark problem from QAPLIB[13].”

Parameters of the Hopfield-type CNN method (Eq.(6)) are

decided asA = 0.34,B = 0.34,k = 087, = 101, 4. Conclusions

e = 002, g = 1100(Had20) andy = 100000(Tai20a).

Parameters of the 2opt driven chaotic dynamical method In this paper, to analyze the influence of the dynamical
(Eq.(8)) are decided adf = 05, « = 1.0, 8 = 1.0, noise added to the CNN, we examine the temporal aver-

B = 0.08(Had20) ang = 0.0002(Tai20a). The weight of age and variance of the internal states of the CNN. As a
the dynamical noise is set to several values. Then, we ugsult, when we add an appropriate amount of dynamical
white Gaussian noise whose average is zero and varianc@@se to the CNN, the temporal average and temporal vari-
unity. The proposed method is applied for 2,000 iterationg&nce takes almost same value in the Hopfield-type CNN
Figure 1 shows results of the proposed methods. Imethod. However, in the case of large amount of dynam-
Fig.1, the results are expressed by percentages of averdgl noise, the temporal average and the temporal variance
gaps between obtained solutions and the optimal solutiof@ke quite diferent from value of the CNN without noise.
for 30 trials. From F|gl(a), if an amount of dynamica|on the other hand, when we add the dynamical noise to the
noise is small (weight of noise or y takes small value), mMethod in which chaotic dynamics drives the 2-opt algo-
the proposed method shows higher performance. Howevéthm, the temporal average and the variance of the neurons
it is almost same performance for Had20, when we use fonotonically increase as the amount of noise increases.
opt algorithm driven by chaotic dynamics, because it has In the Hopfield-type CNN, a firing pattern of CNN rep-
already obtained good solutions (Fig.1(b)). resents a solution of the QAP. However, feasible solutions
cannot be always obtained from outputs of the neurons be-
3.2. Temporal Average and Variance of Internal States Cause an output of the chaotic neuron takes an analog value.
of the Neural Network To generate a feasible solution, we use the firing decision
method [4]. Then, in the feature work, it needs to inves-
To analyze the influence of the dynamical noise to thggate relationships between solution decided by the firing
CNN, we investigate the value of the internal state of th@ecision method [4] and amount of the noise.
chaotic neurons. We calculate the temporal average and
the temporal variance of the chaotic neuron. The temporal
averagey;,, and temporal varianag;r, of the internal states References
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Figure 1: Percentages of average gaps between obtaingmssland the optimal solutions for 30 trials.
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Figure 2: Average ofi,, and average of, when we change the weight of dynamical nojsby using Hopfield-type
CNN with dynamical noise method.
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Figure 3: Average oy, and average aof,, when we change the weight of dynamical nojsky using 2-opt algorithm
driven by chaotic dynamics with dynamical noise.
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