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Abstract—To solve the quadratic assignment problems
(QAPs), two types of chaotic search methods have al-
ready been proposed. In one method, mutual connec-
tion chaotic neural network (CNN), Hopfield-type CNN
method is used, and a firing pattern of the CNN represents
a solution of the QAP. For another method, execution of
local search algorithm is control by the chaotic dynamics.
In both methods, chaotic dynamics works to avoid local
minima. To improve performances of the these methods,
we have already proposed new methods which combine
chaotic dynamics and dynamical noise. As a result, when
small amount of dynamical noise is added to the CNN, the
solving performance is improved. However, we have not
clarified yet why the small amount of dynamical noise is ef-
fective to find good solutions and how to change the search-
ing states of the chaotic neural network by the dynamical
noise. In this paper, to clarify the reason, we analyze the
internal states of the neurons.

1. Introduction

In the real world, various combinatorial optimization
problems exist, for example, VLSI design, scheduling
problem, routing problem, facility layout problem, and so
on. It is important to obtain optimal solutions of these
problems because operation costs can be reduced. These
kind of problems can be formulated as a quadratic assign-
ment problem (QAP) [1]. The QAP is described as follows:
when twoN × N matrices, a distance matrixD and a flow
matrix C are given, find a permutationp which minimizes
a value of the following objective functionF(p):

F(p) =
N∑

i=1

N∑

j=1

di jcp(i)p( j), (1)

wheredi j is the (i, j)th element ofD, p(i) is theith element
of p, cp(i)p( j) is the (p(i), p( j))th element ofC, andN is a
size of the problem. The QAP belongs to a class of NP-
hard. Thus, it is required to develop effective approximate
algorithms for finding near optimal solutions in a reason-
able time frame.

As an approximate algorithm, a method which uses the
mutual connection neural networks, or the Hopfield-Tank

neural network (HNN), has already been proposed [2]. In
this method, a firing pattern of HNN represents a solution
of the QAP. If we decide good synaptic weights of HNN
for solving the QAP, we can obtain a good solution by de-
scent down-hill dynamics of HNN. However, this method
cannot always get good performance because the states of
the HNN get stuck at local minima.

To avoid local minima, a method which injects chaotic
dynamical noise into HNN for solving combinatorial op-
timization problems has been proposed [10, 11]. Using
fluctuation of chaotic time series as dynamical noise, the
state can escape from local minima. As another method for
avoiding local minima, a method which uses chaotic neural
network (CNN) [3] has also been proposed [4, 5]. In the
method, chaotic dynamics of CNN works to avoid the local
minima effectively.

To realize more effective algorithm, we have already pro-
posed a new method which uses both chaotic dynamics and
dynamical noise for avoiding local minima [7, 8]. As a re-
sult, when the small amount of noise is added to CNN, the
proposed method shows good performance. However, as
the amount of noise increases, the performance of the pro-
posed method becomes worse gradually. Namely, the small
amount of noise leads to effective search.

As another approach for solving QAP, 2-opt algorithm
driven chaotic dynamics has been proposed [6]. This
method shows higher performance than the method which
used Hopfield-type CNN. Alternatively we combined this
algorithm with dynamical noise. As a resut [9], when small
amount dynamical noise is added to the CNN. this method
also shows good performance,

Although, the methods which use chaotic dynamics and
dynamical noise shows good performance [9, 4, 5], we have
not clarified yet why the small amount of dynamical noise
is effective to find good solutions and how to change the
searching states of the CNN by the dynamical noise. If
the reasons are identified, the algorithm can be improved
further. Thus, it is important to analyze influence of the
dynamical noise to the chaotic dynamics. In this paper,
we investigated how to change value of internal state of
chaotic neurons depending on the amount of dynamical
noise. From a result, temporal average and variance of
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the internal states of the takes almost same value when we
added small amount of dynamical noise in the Hopfield-
type CNN method. However, when the large amount of
dynamical noise is added to the CNN, the temporal av-
erage and variance take quite difference value. On the
other hand, in the method which 2-opt algorithm driven by
chaotic dynamics, the temporal average and the variance of
the neurons increase monotonously as the amount of noise
increases.

2. Method using both chaotic dynamics and dynamical
noise

2.1. Hopfield-type Chaotic Neural Network with dy-
namical noise

As an approximate algorithm for solving the QAP, a
method which uses mutual connection chaotic neural net-
work (CNN) [3] has already been proposed [4, 5]. The
CNN model is constructed by chaotic neurons [3]. This
neural network model can qualitatively reproduce a chaotic
dynamics observed in real neural membrane. To solve an
N-size QAP,N × N chaotic neurons are prepared in the
method. The (i, m)th neuron corresponds an assignment of
theith facility and themth city.

An internal state of the (i, m)th chaotic neuron of CNN
is defined as follows:

yim(t + 1) = kyim(t) +
N∑

j=1

N∑

n=1

wim; jn f (y jn(t))

−α f (yim(t)) + θim(1− k), (2)

wherek is a decay parameter,α is a strength parameter of
a refractory effect, andf is an output function. Synaptic
weights between the (i, m)th neuron and the (j, n)th neuron
wim; jn and thresholds of the (i, m)th neuronθim are defined
as follows:

wim; jn = −2{A(1− δmn)δi j + Bδmn(1− δi j)

+
di jcmn

q
}, (3)

θim = −(A + B), (4)

whereA and B are positive constants,δi j is Kronecker’s
delta, andq is a normalization parameter. As an output
function, a sigmoidal function is used:

f (y) =
1

1+ exp(− y
ǫ
)
, (5)

whereǫ is a gradient parameter of the sigmoidal function.
In the method, the chaotic dynamics works to avoid the
local minimum problem.

To improve the performance of the method, we have
already proposed a new method which injects dynamical
noise into the CNN [7, 8]. Thus, a term of the dynami-
cal noise is added to Eq.2. An internal state of the (i,m)th

neuron with dynamical noise is defined as follows:

yim(t + 1) = kyim(t) +
N∑

j=1

N∑

n=1

wim; jn f (y jn(t)) − α f (yim(t))

+θim(1− k) + λzim(t), (6)

whereλ is a weight of dynamical noise andzim(t) is a se-
quence of dynamical noise added to the internal state of the
(i,m)th neuron at timet. In the method, both the chaotic
dynamics and the dynamical noise are used to avoid local
minima.

A single iteration is defined as an update of all neurons
asynchronously. Then, the CNN generates solutions for
updating each neuron asynchronously. However, we can-
not always obtain feasible solutions from outputs of the
neurons because an output of the chaotic neuron takes an
analog value. Then, we use the firing decision method [4]
which can always generate a feasible solution for QAP. The
procedure of the method is described as follows:

1. Choose an index (i,m) whose internal stateyim takes
the maximum value among all the neurons. Then, set
the (i,m)th neuron as to firing state, and letxim = 1.

2. Set other neurons in theith row and themth column
to a resting state, and letxik = 0(k , m) and xml =

0(l , i). Then, exclude neurons which have already
been selected in Steps 1 and 2.

3. Repeat Steps 1 and 2 until all states of neurons are
decided.

2.2. 2-opt Algorithm Driven by Chaotic Dynamics with
Dynamical Noise

As another approach for solving QAP, a method in which
chaotic dynamics drives the 2-opt algorithm has been pro-
posed [6]. Although the 2-opt algorithm is one of the sim-
plest local search methods, this algorithm does not obtain
good solutions because of local minimum problem. To
avoid local minima, 2-opt algorithm driven by chaotic dy-
namics has been proposed [6]. As a result, this method
shows better performance than the method which uses mu-
tual connected chaotic neural network.

Then, to improve the performance of this method, we
have already proposed a method which combined 2-opt
algorithm driven by chaotic dynamics and the dynamical
noise [9]. The dynamics of the (i, j)th chaotic neuron is
described as follows:

ξi j(t + 1) = β∆i j(t), (7)

ζi j(t + 1) = kζi j(t) − αxi j(t) + (1− k)θ, (8)

whereξi j(t) is a gain effect of the (i, j)th neuron,∆i j(t) is a
difference between value of the current objective function
and that of a new objective function when theith and the
jth elements in permutationp are exchanged by the 2-opt
algorithm. ζi j(t) is a refractory effect of the (i, j)th neuron
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andβ is a scaling parameter. The output of the (i, j)th neu-
ron at timet + 1, xi j(t + 1), is calculated as:

xi j(t + 1) = f (ξi j(t + 1)+ ζi j(t + 1)+ γzi j(t + 1)), (9)

where f (y) = 1/(1+ e−y/ǫ), zi j(t) is dynamical noise, andγ
is a weight of the dynamical noise. Ifxi j(t+1) ≥ 1/2, the 2-
opt algorithm which exchanges theith and thejth elements
is applied. Each neuron is updated asynchronously.

3. Experimental results

3.1. Performance with Respect to Weight of Noise

To evaluate the performance of the proposed methods
[7, 8], we use the benchmark problem from QAPLIB[13].
Parameters of the Hopfield-type CNN method (Eq.(6)) are
decided asA = 0.34, B = 0.34, k = 0.87, α = 1.01,
ǫ = 0.02, q = 1100(Had20) andq = 100000(Tai20a).
Parameters of the 2opt driven chaotic dynamical method
(Eq.(8)) are decided asfk = 0.5, α = 1.0, θ = 1.0,
β = 0.08(Had20) andβ = 0.0002(Tai20a). The weight of
the dynamical noise is set to several values. Then, we use
white Gaussian noise whose average is zero and variance is
unity. The proposed method is applied for 2,000 iterations.

Figure 1 shows results of the proposed methods. In
Fig.1, the results are expressed by percentages of average
gaps between obtained solutions and the optimal solutions
for 30 trials. From Fig.1(a), if an amount of dynamical
noise is small (weight of noiseλ or γ takes small value),
the proposed method shows higher performance. However,
it is almost same performance for Had20, when we use 2-
opt algorithm driven by chaotic dynamics, because it has
already obtained good solutions (Fig.1(b)).

3.2. Temporal Average and Variance of Internal States
of the Neural Network

To analyze the influence of the dynamical noise to the
CNN, we investigate the value of the internal state of the
chaotic neurons. We calculate the temporal average and
the temporal variance of the chaotic neuron. The temporal
averageyim and temporal varianceσim of the internal states
of the (i,m)th neuron are calculated as follows:

yim =
1
T

T∑

t=1

yim(t), (10)

σim =
1
T

T∑

t=1

(yim(t) − yim). (11)

Figure 2 shows relationships between average ofyim and
σim and the weight of dynamical noiseλ for Hopfield-type
CNN with dynamical noise method. Figure 3 shows rela-
tionships between average ofyim andσim and the weight of
dynamical noiseγ for the method in which 2-opt algorithm
is driven by chaotic dynamics with dynamical noise.

From Fig. 2, if an amount of dynamical noise is large
(λ > 0.007), the temporal average becomes small and the
temporal variance becomes larger value. Then, the solving
performance becomes worse sharply for large amount of
noise (Fig. 1). It is consider that the dynamics of chaotic
search is broken by large amount of noise. However, if
small amount of dynamics noise (λ < 0.007) is added to
the CNN, both of temporal average and variance slightly in-
crease, and the performances are better than original CNN
(λ = 0.0). For the 2-opt algorithm driven by chaotic dy-
namics with dynamical noise, both of temporal average and
temporal variance monotonically increase as the amount of
noise increases (Fig. 3). The effects of dynamical noise to
the internal states of the CNN are different from two meth-
ods.

4. Conclusions

In this paper, to analyze the influence of the dynamical
noise added to the CNN, we examine the temporal aver-
age and variance of the internal states of the CNN. As a
result, when we add an appropriate amount of dynamical
noise to the CNN, the temporal average and temporal vari-
ance takes almost same value in the Hopfield-type CNN
method. However, in the case of large amount of dynam-
ical noise, the temporal average and the temporal variance
take quite different from value of the CNN without noise.
On the other hand, when we add the dynamical noise to the
method in which chaotic dynamics drives the 2-opt algo-
rithm, the temporal average and the variance of the neurons
monotonically increase as the amount of noise increases.

In the Hopfield-type CNN, a firing pattern of CNN rep-
resents a solution of the QAP. However, feasible solutions
cannot be always obtained from outputs of the neurons be-
cause an output of the chaotic neuron takes an analog value.
To generate a feasible solution, we use the firing decision
method [4]. Then, in the feature work, it needs to inves-
tigate relationships between solution decided by the firing
decision method [4] and amount of the noise.
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Figure 1: Percentages of average gaps between obtained solutions and the optimal solutions for 30 trials.
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Figure 2: Average ofyim and average ofσim when we change the weight of dynamical noiseγ by using Hopfield-type
CNN with dynamical noise method.
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