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Abstract–Recent results that enable coherent 
communications and radar using chaotic waveforms are 
presented and discussed. Following the discoveries of 
chaos synchronization and control in the early 1990s, 
various engineering applications of chaos were envisioned. 
Novel communications technologies might use control to 
efficiently encode information in the symbolic dynamics 
of a chaotic oscillator, thereby exploiting the positive 
entropy for carrying information. Similarly, radar 
applications might exploit the positive entropy of a 
wideband, nonrepeating waveform for high-resolution 
imaging. As compelling as such applications are, 
subsequent development was hindered by the lack of a 
simple receiver that could compare favorably to standard 
correlation-based receivers. However, a new class of 
chaotic oscillators was recently reported that admit a 
linear representation and a simple matched filter. This 
development provides a coherent receiver to enable 
practical chaos communication and radar systems. 
Conceptual designs for both communications and radar 
using a matched filter for chaos are developed and 
considered. 
 
1. Introduction 
 

Following the discoveries of chaos synchronization and 
control in the early 1990s, various engineering 
applications of chaos were envisioned [1,2]. The large 
information capacity of chaotic waveforms suggested a 
potential use for high data rate communications [3]. 
Furthermore, the large bandwidth and aperiodicity of 
chaotic waveforms seemed to offer significant benefits for 
high range resolution radar [4]. However, practical 
realization of these applications was hindered by the lack 
of a simple coherent receiver that exploits the 
deterministic structure of these waveforms while 
operating in realistic environments. 

In this paper, we reconsider these potential applications 
in light of the recent discovery of a class of exactly 
solvable chaotic oscillators [5]. These low-dimensional 
systems, which can be realized in a straightforward 
implementation, yield a provably chaotic waveform that is 
exactly represented by the linear convolution of a binary 
symbol sequence and a fixed basis function. Despite the 
chaotic nature of the waveform, the existence of a fixed 
basis function enables the development of a simple 

matched filter to provide an effective coherent receiver 
[6]. For chaos communications where the information is 
encoded in the symbolic dynamics via small perturbation 
control [3], a matched filter provides nearly optimal 
detection of the transmitted symbols. For chaos radar, a 
matched filter for a long waveform sequence offers a 
correlation receiver without the sampling and storage 
requirements of a comparable random signal waveform 
[7]. Consequently, this new class of exactly solvable 
chaotic oscillators may enable practical realization of 
chaos communications and radar technologies. 
 
2. Solvable Chaos 
 

We consider a hybrid system containing a continuous 
scalar state u(t) and a discrete state s(t) that was 
previously considered by Tsubone and Saito [8]. The 
continuous-time dynamics are described by the 
differential equation 

    2 22 0u u u s          (1) 

where  = 2 and 0 <   ln 2. Transitions in the discrete 
state are defined by the guard condition 

       0 sgnu t s t u t    (2) 

meaning s(t) is set to the sign of u(t) whenever its time 
derivative vanishes, and s(t) maintains this value until the 
guard condition is next met. Here, we define 
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so that the switching state only takes the values s(t) = ±1. 
Fig. 1 shows a typical solution obtained via numerical 

integration of the hybrid dynamical system for  = ln 2. In 
this figure, the state u(t) is the continuous waveform, 
while s(t) is the square wave. Fig. 2 shows the 
corresponding phase-space projection. The solution 
waveform exhibits growing harmonic oscillations 
combined with random-like switching, and a dual-lobe 
structure is evident in the phase-space projection. 

Recently, it was shown that an exact, analytic solution 
for this hybrid system can be found [5,6] The solution is 
the linear convolution 

 
      [ ],m t

m

u t s P t m s t s



   

 (4) 

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 322 -



   

where each sm = ±1 and the square brackets indicate the 
greatest integer less than or equal to the argument. In the 
solution, each symbol sm modulates a fixed basis function 
P(t) centered at time t = m. Thus, it is right to think of the 
symbol sm as the information emitted by the oscillator at 
time t = m, and that the oscillator emits one symbol with 
each unit of time. The fixed basis function is 
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which is shown in Fig. 3 for  = ln 2. We note that the 
solution (4) assumes a sequence of symbols that extends 
to േ∞; however, the form of the basis function (5) reveals 
that the state only depends on the current and future 
symbols (m ≥ [t]). 

As evident in the solution (4), an infinite sequence of 
symbols completely and uniquely specifies a solution to 
the hybrid system. Thus, the symbols also serve to label 
each possible solution. Returns in the continuous state at 
integer times un = u(n) satisfy the recurrence relation 

  1 1n n nu e u e s 
      (6) 

where 
  sgnn ns u  (7) 

defines the concurrent symbol. Shown in Fig. 4, this 
return map is piecewise linear and characterized by the 
slope e > 1. As such, the iterated return map is chaotic, 
with Lyapunov exponent  = . Furthermore, the symbols 
sn form a symbolic dynamics for the map, with a 
generating partition in equation (7). 

The implication is that the hybrid dynamical system is 
also chaotic, and the symbols also form a symbolic 
dynamics for the hybrid oscillator. For  < ln 2, the 
grammar is restricted and not every sequence of symbols 
is allowed; however, for the special case  = ln 2, the map 
is a full shift and the grammar is unrestricted. 

A matched filter for a given waveform is the optimal 
linear filter for detecting that waveform in AWGN. 
Practically, a matched filter can be realized as a filter with 
an impulse response that is the time reversal of the 
waveform to be detected. In particular, the matched filter 
for the basis function P(t) is the linear operator  such 

that 
    t P t     (8) 

where (t) is the Dirac delta function. This operator is 
realized by the stable filter 
    1v t v t     (9) 

      2 2 2 22 t              (10) 

where (t) is the input, (t) is an intermediate state, and 
(t) is the output [6]. It is straightforward to verify that 
(t) = (t) for (t) = P(-t). As such, equations (9)-(10) 
provide a matched filter for the basis function (5), and the 
matched filter can be used to detect the waveform 
symbols in the presence of noise. 
 
3. Chaos Communications 
 

The existence of a simple matched filter for a chaotic 
waveform enables development of practical chaos 
communications. Previously, it has been shown that an 
information sequence can be efficiently encoded in the 
symbolic dynamics of a chaotic waveform using chaos 
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FIG. 3. Chaos basis function P(t) for  = ln 2. 
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FIG. 1. Typical continuous waveform u(t) and discrete 

state s(t) from numerical integration of the hybrid 
dynamical system for  = ln 2. 
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FIG. 2. Phase-space projection from numerical 
integration of the hybrid system for  = ln 2. 
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control [3]. This elegant approach provides the advantage 
of encoding information in the natural dynamics of the 
chaotic oscillator; thus, the performance of a 
communication channel designed to transmit the chaotic 
waveform will not be degraded by the modulation. This 
feature is especially appealing for very high speed data 
communications where the data rate is commensurate 
with the carrier frequency, since the there are no 
modulation transients and the entire waveform can be 
utilized to carry information. 

A matched filter for chaos provides a coherent receiver 
that achieves nearly optimal performance in the presence 
of channel noise. The theoretical performance 
characteristics of a chaos communications system 
incorporating the matched filter has been analyzed [6]. It 
is found that the bit-error rate (BER) for detecting 
symbols from an unconstrained oscillator in the presence 
of additive white Gaussian noise (AWGN) is 
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where 
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is proportional to the energy contained in the basis 
function and  2 is the noise variance. Fig. 5 shows this 
result compared with binary phase-shift key (BPSK) 
encoding, where the horizontal axis 
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is the effective ratio of bit energy to noise power spectral 
density. For comparison, the best-case BER for coherent 
differential chaos shift keying (DCSK) is also shown in 
the figure [9]. 

 
4. Chaos Radar 
 

The matched filter for a chaotic waveform can be 
extended in a standard way to provide coherent detection 
in a radar receiver [7]. To detect weak signals buried in 
noise, radar receivers rely on pulse compression, in which 
extended signals are detected using correlation. Larger 
bandwidth signals equate to higher range resolution, 
which is desirable. Random-signal radar is a relatively 
new technology that uses random noise-like waveforms to 
achieve very high range resolution. 

Chaos naturally provides a large bandwidth signal that 
can also be used for high range resolution radar. 
Furthermore, the matched filter can be extended to detect 
a particular pulse sequence within the chaotic waveform. 
For this purpose, we consider any pulse sequence  
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where the sm are fixed. This waveform is analogous to a 
phase-coded, pulse compression waveform. The matched 
filter for this pulse sequence is then 
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      2 2 2 22 t              (16) 

which simply requires additional evenly spaced delay taps 
weighted by the sequence symbols [7]. Importantly, no 
high fidelity copy of the transmitted signal is required for 
a correlation. Instead, the only information required from 
the transmitted waveform is the symbol sequence ms . 

In a random-signal radar, the emitted waveform must be 
digitized at a high rate (i.e., the Nyquist requirement of 
twice the bandwidth) and resolution (e.g., 8 bits). This 
high-fidelity representation is stored in a digital memory. 
Upon reception, the incoming signal is similarly digitized 
and a digital signal processor (DSP) performs the 
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FIG 5. Analytic BER for matched filter chaos 
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correlation, usually using a fast Fourier transform (FFT). 
In contrast, the wideband waveform of a solvable chaotic 
oscillator can be compressed to a single bit per cycle (i.e., 
the symbol sequence), which provides an order of 
magnitude reduction in the sampling and storage 
requirements. As such, the complexity and cost for a 
chaos radar should be less than that of a comparably 
performing random signal radar. 

Fig. 6 shows the results of a chaos radar simulation 
using a matched filter receiver. The top plot shows a 
portion of a typical oscillator waveform that constitutes 
the transmitted waveform. A segment of 50 cycles is 
highlighted, from which symbols are extracted and used 
to weight the delay taps in a corresponding matched filter. 
To simulate a received waveform, the transmitted 
waveform is discretized at 10 samples per cycle, and 
random noise w(t) is added to each sample from a 
Gaussian distribution with mean  = 0 and a standard 
deviation  = 2.5. The middle plot shows the received 
signal, in which the chaos is visibly obscured by the noise. 
The received waveform is then used as an input to the 
matched filter. The output of the matched filter is shown 
in bottom plot. A prominent peak appears indicating that 
the transmitted waveform can be detected. We emphasize 
that this result was obtained by integration of the simple 
matched filter equations rather than an explicit evaluation 
of the correlation. Thus, this simulation indicates a simple 
analog receiver can provide effective pulse compression 
in chaos radar. 
 

5. Conclusion 
 

A simple matched filter for chaos is a significant 
component to enable development of practical chaos 
communications and radar technologies. For chaos 
communications, a matched filter provides a coherent 
receiver for detecting the information encoded in the 
symbolic dynamics of a transmitted waveform. For chaos 
radar, a matched filter enables significant pulse 
compression without the sampling and storage 
requirements of a comparable random signal waveform. 
Although other hurdles remain in the realization of 
practical chaos communications and radar, this 
development provides an important step toward making 
these technologies viable. 
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