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Abstract—A one-dimensional model of an quantum
electromagnetic wave detector is analyzed. The detec- {2 _ _ _ _ _ ____ _.
tor based on quantum photoelectronics has multiple barri-
ers between its wave-receiving section and photoelectron-
outputting section to acquire sensitiveness to frequency of
the wave. Regarding an electron in the detector both as
guantum wave and as a probabilistic particle, we describe
the behavior of the electron by the Setinger and the
Langevin equations. Solving the two equations, we demon- V2 e input 7 = ¢ = < outpui~
strated that the detector possessed the sensitiveness and that
the wave and particle nature of the electron were equiva-
lent. Vi

1. Introduction

Nanometer scale devices such as quantum dots can de- 0 X1 X2 XX x
tect not only light waves but also terahertz electromag-. . .
netic waves [L, 2]. The detectors absorbing the wave emi dgure 1: Potential of a model of electromagnetic wave de-
so-called photoelectrons. Circuits consisting of singlet-eCtorS'

electron tunneling (SET) devices [3] can process streams

of photoelectrons [4, 5]. In the near future, very sensi- |, this paper, the Planck constanis normalized to 1.0.
tive sensing and very low power communication will berpe energy of a photon of frequeney, = 2rx10THz is
achieved with terahertz detectors and SET signal procegrso normalized to 1.0. Thus. unit enerlyy, is approxi-
Sors. _ _ ~ mately 10%° Joule or 0.04 eV. Because of the energy nor-
Electrons have wave-particle duality. Electrons eXC'tePnalization, unit time corresponds to 0.1psec. We also nor-
by electromagnetic waves in the detectors are described f4jize electron mass to 1.0 and the velocity of electron
wave functions obtained by solving the Siinger equa- yith kinetic energyiwy, to 1.0. Then, unit velocity and unit

tion. On the other hand, SET circuits processing the phot@sngth correspond respectively to®h'sec and 10nm.
electron streams regard the electrons as particles with prob-

abilistic behavior. In circuit simulation, conversion from

the spatially spread waves to sample particles will be high. Structure of the Detector

in computational complexity if the quantum front-end cir-

cuits are many-body or high dimensional quantum systems Figure 1 shows a one-dimensional model of the detec-

[6]. This problem will be solved if the photoelectrons intor with two barriers in its inside. The detector consists of

the detectors can be described as particles. In addition, ttieee sections, aperture section where electrons are exposed

description helps to make lumped parameter device modedad excited by electromagnetic waves, transfer section, and

suitable for conventional circuit simulators. output section from which photoelectrons exit. In the trans-
In this paper, we use Nelson’s stochastic quantizatiofer section, an electron takes discrete states of eriergy

theory [7] to describe electrons in the detectors as particlés: 1, 2,- - -. Then, electrons of specific kinetic energy pass

with probabilistic behavior. The detectors have to be sengihrough the section. An electron in the aperture section also

tive to electromagnetic waves of specified frequency. Theakes discrete states of eneffgy;, j = 1, 2,---. When an

detectors analyzed in this paper have multiple barriers belectron is excited by electromagnetic wave from ground

tween their wave-receiving section, or aperture section, atelel Eao to an higher leveEa ; which is almost equal to

photoelectron-outputting section to attain the frequencykr;, it penetrates the transfer section. Thus, the detector

depending sensitiveness, which is the matfedénce from is sensitive to electromagnetic waves of frequesacsyuch

the detector analyzed in [6] thatziw = Etj — Eap (i = h/2r, h: Plank constant).
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3. Description of the Detector Let p(x,t) be the probability distribution ok. Nelson’s

. . stochastic quantization theory [7] asserts that if
We analyze motion of an electron in the detector. A one-

dimensional potential in Fig. 1 is expressed by b(x,t) = Z[x(x,1)] + 2 [x(x 1)], 9)
V, for x<O0 X, 1) = vVIiny(x1), vzﬁ
0 forO0<x<x X9 vy m

Vi for x3 < X< X then
V(X)=3 0 for xx <x<Xx3 1) ' )

Vp for X3 < X< X p(X 1) = [y (X, 1) (10)
0 for x4 < X< X5
V, for x5 <X

whereZ[x] and .#[x] are real and imaginary parts gf
respectively.
In a later numerical example, the parameters of the poten-
tial areV1 =30,Vo =10, %X =4 0r8,% — X1 = X4 — X3 =
0.5, andxs — x4 = 4.

The behavior of an electron in the potential is governed Assuming thais(x, 0) = ¥o(x, 0) or ca(0) = Con, We de-
by a Schédinger equation possessing the following Hamilyermine the constant term from the initial distribution of
tonianH or Ho depending on the presence or absence @fave function, that is, we determine it by the following

4. Numerical Experiments

electromagnetic waves: equations:
Ho = —h—zvz +V(X) ) *
°=~2m an= [ o905, (90l (11)
X=—00
-x for —a<x<a 1 0 .
H = Ho + u(X)EexiCOSWL, p(x) = { 0 otherwise $o(X) = \/ﬁf #o(P) exp(|gx)d P,
®) - 2
In the absence of electromagnetic waves, the solution ofthe 4, (p) = ——=— exp| i Lx, - (P-po)”
s . . . . ] (2ﬂ0.2)1/4 f 42
Schibdinger equation is expressed by using the eigenener p p
giesEg,, and the eigenfunctiongp n(X) of Hamiltonian op- ) o
eratorH, as The aboye. functh@o_(p) |mpl|es that mor_nentum) of the
electron initially distributes in the Gaussian form.
= . Eon We set the expectation of initial locatiog of the elec-
t) = —1—t 4 . . .
Yo%) ;CO’”%’”(X) exp( "7 ) ) tron to xo = 0. Expectationpy and variancer3 of ini-

o tial momentum are determined so that the electron initially
We express the wave function in the presence of elegakes ground state and exists in aperture section at high

tromagnetic waves by using the same eigenenergies apghpability. Electromagnetic excitation waves of frequency

eigenfunctions as w = wa1 = 7.21 andw,, = 8.14 are applied whexy = X, =
- E 4. Whenx; = x, = 8, the frequency i& = wp1 = 6.46 and
Y(xt) = Z Cn(t)pon(X) exp(—i%t) (5) wp2=8.21. Now, we can let wave functiaf(x, t) evolve.
n=0

Let codficientsc(t) in Eq. (5) be expanded into the fol- 5 Resylt
lowing power series of:

Ca(t) = Com + €Cna(t) + €2Cna(t) + - - - ©6) Fig_ure.2 shows _the wave functiontat 150. As the wave .
" " 1 n2 function is determined, we can derive a nonlinear Langevin
The first and the higher-order time-varying terms are deequation from Eq. (9). Samples of numerical solutions of
termined by the perturbation method [8]. The zeroth-ordghe Langevin equation are shown in Fig. 3. In Fig. 4, trans-
constant ternty, is the codicient for the wave functions mission rate of an electron through the transfer section is
Yo(x, t) given by Eq. (4). plotted against the kinetic energy of the electron. Table 1
Consider a probabilistic lumped parameter system dé&hows probability that an electron exists in the output sec-
scribed by the following nonlinear Langevin equation:  tion for x4 < x < xs. Figures 3 and 4 imply that the prob-
ability is higher whernw = wa1, wp1 than whernw = w, 2,
w = b(x, 1) + \/Er(t) (7) o2 This is quantitatively shown in Tab. 1. These are
dt ' 2 because electrons excited by electromagnetic wave of fre-
whereT(t) is a white Gaussian noise with the following AUENCYw = wa1 andwp, obtain energy at which the trans-
correlation property: mission rat'e. is maximum. We also see from the table .that
the probabilities obtained from the evolving wave function
<TOIr(E) >=6(t-t) (8) andthe sample electron trajectories are almost the same.
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Figure 2: Marginal probability distribution of thex- 100 100
directional location of an electron. 120 120
140 140
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Table 1: Probability that an electron exists in the output ! W= W1
section. Figure 3: Sample trajectories of electrons in the detector
Excitation | Estimation by Estimation by model.
frequencyw | wave functions| electron trajectories
wa1 =7.21 0.17 0.19
wa2 =8.14 0.01 0.02
wWp,1 =6.46 0.13 0.14
wp2 =8.21 0.03 0.00
1.0+
6. Conclusions . 081
A one-dimensional model of an electromagnetic wave é
detector was analyzed. The quantum photoelectronic de- 3 0.6
tector has multiple barriers between their aperture section g
and photoelectron-outputting section to acquire sensitive- 2
ness to frequency of the wave. Regarding an electron in 5 0.4
the detector both as quantum wave and as a probabilistic £
particle, we described the behavior of the electron by the
Schiddinger and the Langevin equations. Solving the two 0.2+
equations, we demonstrated that the detector possessed the
sensitiveness and that the wave and patrticle nature of the ‘

electron were equivalent. 0 10 20 30 40 50
Energy

Figure 4: Transmission rate of an electron through the
transfer section.

-211-



References

[1] B. F. Levine, “Quantum-Well Infrared Photodetec-
tors,” Journal of Applied Physigsvol. 74, pp.R1-
R81, 1993.

[2] H. C. Liu, C. Y. Song, A. J. Springthorpe, and
J. C. Cao, “Terahertz Quantum-Well Photodetector,”
Applied Physics Letterd/ol. 84, Issue 20, pp.4068-
4070, 2004.

[3] J. Hoekstra,Introduction to Nanoelectronic Single-
Electron Circuit Design Pan Stanford Publishing,
2010.

[4] H. Fujisaka, T. Kamio, C. Ahn, M. Sakamoto and
K. Haeiwa, “Sorter-based Arithmetic Circuits for
Sigma-Delta Domain Signal Processing — Part I: Ad-
dition, Approximate Transcendental Functions, and
Log-domain Operations,IEEE Trans. on Circuits
and Systems Mol. 59, No. 9, pp.1952-1965, 2012.

[5] H. Fujisaka, M. Sakamoto, C. Ahn, T. Kamio
and K. Haeiwa, “Sorter-based Arithmetic Circuits
for Sigma-Delta Domain Signal Processing — Part
II: Multiplication and Algebraic Functions,TEEE
Trans. on Circuits and Systems Vol. 59, No. 9,
pp.1966-1979, 2012.

[6] VY. Kawabata, H. Fujisaka, and T. Kamio “Probabilis-
tic Particle Modeling of Quantum Wave Propagation
with Excitation and Refraction,’Proc. of Interna-
tional Symposium on Circuits and Systerpp.474-
477, 2014.

[7] E. Nelson, “Derivation of the Scbdinger Equa-
tion from Newtonian MechanicsPhysical Review
Vol. 150, No. 4, pp.1079-1085, 1966.

[8] A. Nayfeh, Perturbation Methods John Wiley &
Sons, 1973.

-212 -



