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Abstract—A one-dimensional model of an quantum
electromagnetic wave detector is analyzed. The detec-
tor based on quantum photoelectronics has multiple barri-
ers between its wave-receiving section and photoelectron-
outputting section to acquire sensitiveness to frequency of
the wave. Regarding an electron in the detector both as
quantum wave and as a probabilistic particle, we describe
the behavior of the electron by the Schrödinger and the
Langevin equations. Solving the two equations, we demon-
strated that the detector possessed the sensitiveness and that
the wave and particle nature of the electron were equiva-
lent.

1. Introduction

Nanometer scale devices such as quantum dots can de-
tect not only light waves but also terahertz electromag-
netic waves [1, 2]. The detectors absorbing the wave emits
so-called photoelectrons. Circuits consisting of single-
electron tunneling (SET) devices [3] can process streams
of photoelectrons [4, 5]. In the near future, very sensi-
tive sensing and very low power communication will be
achieved with terahertz detectors and SET signal proces-
sors.

Electrons have wave-particle duality. Electrons excited
by electromagnetic waves in the detectors are described by
wave functions obtained by solving the Schrödinger equa-
tion. On the other hand, SET circuits processing the photo-
electron streams regard the electrons as particles with prob-
abilistic behavior. In circuit simulation, conversion from
the spatially spread waves to sample particles will be high
in computational complexity if the quantum front-end cir-
cuits are many-body or high dimensional quantum systems
[6]. This problem will be solved if the photoelectrons in
the detectors can be described as particles. In addition, the
description helps to make lumped parameter device models
suitable for conventional circuit simulators.

In this paper, we use Nelson’s stochastic quantization
theory [7] to describe electrons in the detectors as particles
with probabilistic behavior. The detectors have to be sensi-
tive to electromagnetic waves of specified frequency. The
detectors analyzed in this paper have multiple barriers be-
tween their wave-receiving section, or aperture section, and
photoelectron-outputting section to attain the frequency-
depending sensitiveness, which is the main difference from
the detector analyzed in [6]
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Figure 1: Potential of a model of electromagnetic wave de-
tectors.

In this paper, the Planck constantℏ is normalized to 1.0.
The energy of a photon of frequencyωp = 2π×10THz is
also normalized to 1.0. Thus, unit energyℏωp is approxi-
mately 10−20 Joule or 0.04 eV. Because of the energy nor-
malization, unit time corresponds to 0.1psec. We also nor-
malize electron massm to 1.0 and the velocity of electron
with kinetic energyℏωp to 1.0. Then, unit velocity and unit
length correspond respectively to 105m/sec and 10nm.

2. Structure of the Detector

Figure 1 shows a one-dimensional model of the detec-
tor with two barriers in its inside. The detector consists of
three sections, aperture section where electrons are exposed
and excited by electromagnetic waves, transfer section, and
output section from which photoelectrons exit. In the trans-
fer section, an electron takes discrete states of energyET,i ,
i = 1, 2, · · ·. Then, electrons of specific kinetic energy pass
through the section. An electron in the aperture section also
takes discrete states of energyEA, j , j = 1, 2, · · ·. When an
electron is excited by electromagnetic wave from ground
level EA,0 to an higher levelEA, j which is almost equal to
ET,i , it penetrates the transfer section. Thus, the detector
is sensitive to electromagnetic waves of frequencyω such
thatℏω = ET,i − EA,0 (ℏ = h/2π, h : Plank constant).
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3. Description of the Detector

We analyze motion of an electron in the detector. A one-
dimensional potential in Fig. 1 is expressed by

V(x) =



V2 for x < 0
0 for 0≤ x < x1

V1 for x1 ≤ x < x2

0 for x2 ≤ x < x3

V1 for x3 ≤ x < x4

0 for x4 ≤ x < x5

V2 for x5 ≤ x

(1)

In a later numerical example, the parameters of the poten-
tial areV1 = 30,V2 = 10, x1 = 4 or 8,x2 − x1 = x4 − x3 =

0.5, andx5 − x4 = 4.
The behavior of an electron in the potential is governed

by a Schr̈odinger equation possessing the following Hamil-
tonian H or H0 depending on the presence or absence of
electromagnetic waves:

H0 = −
ℏ2

2m
∇2 + V(x) (2)

H = H0 + µ(x)Eextcosωt, µ(x) =

{
−x for − a ≤ x < a

0 otherwise
(3)

In the absence of electromagnetic waves, the solution of the
Schr̈odinger equation is expressed by using the eigenener-
giesE0,n and the eigenfunctionsϕ0,n(x) of Hamiltonian op-
eratorH0 as

ψ0(x, t) =
∞∑

n=0

c0,nϕ0,n(x) exp

(
−i

E0,n

ℏ
t

)
(4)

We express the wave function in the presence of elec-
tromagnetic waves by using the same eigenenergies and
eigenfunctions as

ψ(x, t) =
∞∑

n=0

cn(t)ϕ0,n(x) exp

(
−i

E0,n

ℏ
t

)
(5)

Let coefficientscn(t) in Eq. (5) be expanded into the fol-
lowing power series ofϵ:

cn(t) = c0,n + ϵcn,1(t) + ϵ2cn,2(t) + · · · (6)

The first and the higher-order time-varying terms are de-
termined by the perturbation method [8]. The zeroth-order
constant termc0,n is the coefficient for the wave functions
ψ0(x, t) given by Eq. (4).

Consider a probabilistic lumped parameter system de-
scribed by the following nonlinear Langevin equation:

dx(t)
dt
= b(x, t) +

√
ν

2
Γ(t) (7)

whereΓ(t) is a white Gaussian noise with the following
correlation property:

< Γ(t)Γ(t′) >= δ(t − t′) (8)

Let ρ(x, t) be the probability distribution ofx. Nelson’s
stochastic quantization theory [7] asserts that if

b(x, t) = R[χ(x, t)] +I [χ(x, t)], (9)

χ(x, t) = ν∇ lnψ(x, t), ν =
ℏ

m

then,

ρ(x, t) = |ψ(x, t)|2 (10)

whereR[χ] and I [χ] are real and imaginary parts ofχ
respectively.

4. Numerical Experiments

Assuming thatψ(x,0) = ψ0(x, 0) or cn(0) = c0,n, we de-
termine the constant term from the initial distribution of
wave function, that is, we determine it by the following
equations:

c0,n =

∫ ∞

x=−∞
ϕ0(x)ϕ∗0,n(x)dx, (11)

ϕ0(x) =
1
√

2πℏ

∫ ∞

−∞
ϕ0(p) exp

(
i
p
ℏ

x
)
dp,

ϕ0(p) =
1

(2πσ2
p)1/4

exp

−i
p
ℏ

x0 −
(p− p0)2

4σ2
p


The above functionϕ0(p) implies that momentump of the
electron initially distributes in the Gaussian form.

We set the expectation of initial locationx0 of the elec-
tron to x0 = 0. Expectationp0 and varianceσ2

p of ini-
tial momentum are determined so that the electron initially
takes ground state and exists in aperture section at high
probability. Electromagnetic excitation waves of frequency
ω = ωa,1 = 7.21 andωa,2 = 8.14 are applied whenx1 = xa =

4. Whenx1 = xb = 8, the frequency isω = ωb,1 = 6.46 and
ωb,2 = 8.21. Now, we can let wave functionψ(x, t) evolve.

5. Result

Figure 2 shows the wave function att = 150. As the wave
function is determined, we can derive a nonlinear Langevin
equation from Eq. (9). Samples of numerical solutions of
the Langevin equation are shown in Fig. 3. In Fig. 4, trans-
mission rate of an electron through the transfer section is
plotted against the kinetic energy of the electron. Table 1
shows probability that an electron exists in the output sec-
tion for x4 ≤ x ≤ x5. Figures 3 and 4 imply that the prob-
ability is higher whenω = ωa,1, ωb,1 than whenω = ωa,2,
ωb,2. This is quantitatively shown in Tab. 1. These are
because electrons excited by electromagnetic wave of fre-
quencyω = ωa,1 andωb,1 obtain energy at which the trans-
mission rate is maximum. We also see from the table that
the probabilities obtained from the evolving wave function
and the sample electron trajectories are almost the same.

- 210 -



0 4 8 12

0.4

0.3

0.2

0.1

x

t =150,ω=ωa,1

|ψxp2|

|ψxp2| |ψxp2|

x
0 4 8 12

0.4

0.3

0.2

0.1

0.5

t =150,ω=ωa,2

|ψxp2|

x
16124 8

t =150,ω=ωb,2

0

0.02

0.04

0.06

0.08

0.10

x
161284

t =150,ω=ωb,1

0

0.02

0.04

0.06

0.08

0.10

0.12

output output

output output

Figure 2: Marginal probability distribution of thex-
directional location of an electron.

Table 1: Probability that an electron exists in the output
section.

Excitation
frequencyω

Estimation by
wave functions

Estimation by
electron trajectories

ωa,1 =7.21 0.17 0.19
ωa,2 =8.14 0.01 0.02
ωb,1 =6.46 0.13 0.14
ωb,2 =8.21 0.03 0.00

6. Conclusions

A one-dimensional model of an electromagnetic wave
detector was analyzed. The quantum photoelectronic de-
tector has multiple barriers between their aperture section
and photoelectron-outputting section to acquire sensitive-
ness to frequency of the wave. Regarding an electron in
the detector both as quantum wave and as a probabilistic
particle, we described the behavior of the electron by the
Schr̈odinger and the Langevin equations. Solving the two
equations, we demonstrated that the detector possessed the
sensitiveness and that the wave and particle nature of the
electron were equivalent.
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Figure 3: Sample trajectories of electrons in the detector
model.
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Figure 4: Transmission rate of an electron through the
transfer section.
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