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Abstract—This paper studies a novel application of par-
ticle swarm optimizers to finding desired parameters for
multi-objective problems in switched dynamical systems.
We consider a simplified model of photovoltaic systems
such that the input is a single solar cell and is converted to
the output via a boost converter. We define realizable pa-
rameters with large average power as a desired parameter
set. From simulation results, the efficiency of the proposed
algorithm is confirmed.

1. Introduction

The Particle Swarm Optimization (PSO) [1]–[2] is an al-
gorithm to simulate the movement of flocks of birds. Each
particle of swarm tries to find a better solution according
to its personal best position and the swarm best position.
The many real/potential applications have been proposed,
including design of artificial neural networks, digital filters,
power systems and power converters [3]–[6]. It should be
noted that the PSO does not require differentiability of the
objective function that is a compulsory item in the gradient
methods. The PSO is well suited for application to circuits
with discontinuous switching that are widely used in a va-
riety of switching power converters.

This paper proposes an application of the PSO to anal-
ysis of switched dynamical systems (SDS). The SDS can
exhibit rich bifurcation phenomena [7]–[8] and relates to
many engineering systems including power converters. In
this study, we consider an example of the SDS which is
a simplified model of photovoltaic (PV) systems such that
the input is a single solar cell and is converted to the out-
put via a boost converter [9]. Since the maximum power
point (MPP) of the PV system depends on the operating
terminal voltage and current, the maximum power point
tracker has been studied as a key technique [10]-[11]. Our
SDS includes the solar cell input modeled by a current-
controlled voltage source (CCVS) having piecewise linear
(PWL) characteristics that can be regarded as a simplified
version of the existing smooth model [12]. A switching
rule is a variant of peak-current-controlled switching and
can cause various bifurcation phenomena. It has been in-
vestigated that as a parameter varies, a stable periodic orbit
(SPO) is changed into an unstable periodic orbit (UPO) via
period-doubling bifurcation and another SPO appears. Fur-
thermore, the UPO can have larger average power than the

SPO and can have the MPP.
This paper proposes an application of the PSO to multi-

objective problems (MOP) and applies the proposed algo-
rithm to find desired parameters for the MOP in the SDS.
The MOP is described by the hybrid fitness functions con-
sisting of the functions evaluating the validity of parame-
ters and criteria. We define a parameter, which is a period-
doubling bifurcation set and is the MPP, as a desired param-
eter which is realizable with large average power. From
simulation results, we confirm that the PSO for the MOP
can easily find the desired parameter although a numerical
calculation needs huge calculation amount.

2. Particle Swarm Optimizer for Multi-objective prob-
lems

We propose the application of the PSO to the MOP.
Let us consider a positive definite multi-objective func-

tion of parameters ~a ≡ (a1, a2, · · · , aD);

F j(~a) ≥ 0, j = 1, 2, · · · ,M, (1)

where M = 1 and M ≥ 2 correspond to an uni-objective
problem and a MOP, respectively. Although usual opti-
mization algorithms try to find the minimum value of F j,
we introduce the inequalities

0 ≤ F j(~a) < C j, (2)

where C j is the j-th criterion. Our problem is finding pa-
rameter values that satisfy Eq. (2). This flexibility can help
to search a suitable solution and can give better result than
MOP without the criterion.

In the algorithm of PSO, multiple potential solutions
called “particles” coexist. Each particle has two infor-
mations; position and velocity. The position vector of
i-th particle at discrete time n and its velocity vector
are represented by ~ai(n) ≡ (ai1, ai2, · · · , aiD) ∈ <D and
~vi(n) ≡ (vi1, vi2, · · · , viD) ∈ <D, respectively, where (i =
1, 2, · · · ,N). The position corresponds to the parameter ~a
in Eq. (2). Each particle moves toward the personal best
position ~api (pbesti), which is the past best position of i-th
particle, and the global best position ~ag (gbest) which is the
best pbest among all the particles. The ~ag is the potential
solution at time n.
Step 1 (Initialization): Let a discrete generation step n = 0.
Randomly initialize the particle position ~ai(n) in the search
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space Ds ⊂ <D, and initialize other variables; velocity
~vi(n) = 0, ~api = ~ai(n) and ~ag = ~a1(n).
Step 2 (Evaluation): Terminate the algorithm if

0 ≤ F j(~ag) < C j for j = 1, 2, · · · ,M. (3)

If not, go to Step 3.
Step 3 (Updating): Update ~vi and ~ai of each particle i;

~vi(n + 1)
= w~vi(n) + ~r1ρ1(~api − ~ai(n)) + ~r2ρ2(~ag − ~ai(n)),

~ai(n + 1) = ~ai(n) + ~vi(n + 1),
(4)

where w is the inertia weight determining how much of the
previous velocity of the particle is preserved. ~r1 and ~r2
are D-dimensional uniform random number vectors from
U(0,1). ρ1 and ρ2 are two positive acceleration coefficients.
Step 4 (Hybrid fitness): Renew pbesti if the fitness is im-
proved or satisfies the criteria. Let ~api = ~ai(n + 1) if

F j(~ai(n + 1)) < F j(~api ) OR F j(~ai(n + 1)) < C j, (5)

is satisfied for all the objective functions. Renew gbest as
~ag = ~api , where i is a particle whose pbesti satisfies

F j(~api ) < F j(~ag) OR F j(~api ) < C j, (6)

for all the objective functions. If more than one particle
satisfies Eq. (6), the particle i with the smallest index is
chosen.
Step 5 Let n = n + 1, return to Step 2 and repeat until the
maximum time limit nmax.

3. Multi-Objective Optimization for Circuit model of
the boost converter with a solar cell.

3.1. Circuit model
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Figure 1: Circuit model of the boost converter with a solar
cell

In order to evaluate the performance of the proposed
algorithm, we consider detection of the MPP of the SDS
which is the simplified model of the PV systems. Figure 1
shows the SDS where the 2-segment PWL CCVS models
the solar cell input [9]. The dimensionless circuit equation
is described by

dx
dτ
=

 γy(x), for State 1
γ(y(x) − q), for State 2,

(7)
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Figure 2: Typical orbits and instantaneous power pin (aver-
age power PA) for α = 0.5, β = 9.0, q = 1.6, X− = 0.7
and γ = 0.884. (a) SPO with period 2 and (b) pin of SPO
(PA = 0.87). (c) UPO with period 1 and (d) pin of UPO
(PA = 0.91).

y(x) =
 − β(x − 1) + 1, for x > 1
− α(x − 1) + 1, for x ≤ 1,

(8)

SW Rule:
State 2→ State 1: when x = X− > 0.
State 1→ State 2: at τ = n and x > X−,

(9)

where the SW rule is a variant to peak-current control. The
dimensionless variables and parameters are defined by

τ =
t
T
, x =

i
Ip
, y(x) =

Vi(Ipx)
Vp

, α =
raIp

Vp

β =
rbIp

Vp
, q =

Vo

Vp
, γ =

TVp

LIp
, X− =

J−
Ip
.

(10)

The dimensionless 5 parameters can be classified into two
categories: (α, β, q), which characterizes “solar cell and
load”, and (γ, X−) which characterizes “switching control”.
The piece-wise exact solution is given by

State 1:

x(τ) = (x0 − xe1)e−γα(τ−τ0) + xe1, for x ≤ 1

x(τ) = (x0 − xe2)e−γβ(τ−τ0) + xe2, for x > 1
State 2:

x(τ) = (x0 − xe3)e−γα(τ−τ0) + xe3, for x ≤ 1

x(τ) = (x0 − xe4)e−γβ(τ−τ0) + xe4, for x > 1

(11)

where (τ0, x0) denotes an initial condition, xe1 = 1 + 1/α,
xe2 = 1 + 1/β, xe3 = q/α − 1 − 1/α and xe4 = q/β − 1 −
1/β. Using Eq. (11), we can calculate waveforms precisely.
Figures 2(a) and (c) show typical examples; the SPO with
period 2 and the UPO with period 1 for the same parameter
values as the SPO.

In order to consider the power characteristics, we define
the dimensionless instantaneous and average powers;

pin(τ) =
i(t)
Ip

Vi(t)
Vp
, PA =

1
Np

∫ Np

0
pin(τ)dτ (12)
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Figure 3: Typical phase maps. α = 0.5, β = 0.9, q =
1.6 and X− = 0.7. (a) Stable fixed point p1 for γ = 1.0.
(b) Stable 2-periodic points for γ = 0.884. p1 is unstable.

where Np = Tp/T is the dimensionless period of the SPO
or the UPO for dimensionless time τ. Figures 2(b) and
(d) show the instantaneous power pin(τ) corresponding to
Figs. 2(a) and (c), respectively. The UPO as Fig. 2(d) has
lower peak, the pin has shallower valley and the PA is larger
than that of the SPO in Fig. 2(b). Although the UPO is not
observable, it has larger power than the SPO for the same
parameter. Such a UPO can have the MPP for the parame-
ter γ.

In order to analyze and power characteristics, we derive
the phase map. Let τn denotes the n-th switching time at
the lower threshold X−, and let θd be a border time such
that a trajectory started from (θd, X−) reaches (1,1). We can
describe a one-dimensional map explicitly;

F(τn) =

 f1( f2( f3( f4(τn)))), for 0 ≤ τn < θd

g1(g2(τn)), for θd ≤ τn < 1
(13)

where

τn+1 = f1(τs2), τs2 = f2(xs1), xs1 = f3(τs1), τs1 = f4(τn)
τn+1 = g1(xs2), xs2 = g2(τn), g2(θd) = 1.

Let a phase variable θn = τn mod 1. The phase map f from
the unit interval I ≡ [0, 1) to itself;

θn+1 = f (θn) ≡ F(θn) mod 1, for θn ∈ I. (14)

As shown in Fig. 3, this phase map forms a convex curve.
A point p is said to be a k-periodic point if p = f k(p) and
p , f l(p) for 1 ≤ l < k where f l(xp) = f ( f l−1(p)) and
f 0(p) ≡ p. A 1-periodic point is referred to as a fixed
point. A periodic point p is said to be unstable and stable
for initial value if |D f k(p)| > 1 and |D f k(p)| < 1, respec-
tively, where D f k(p) is the slope of f k at p. The stable and
unstable periodic points correspond to the SPO and UPO
of the SDS, respectively.

Figure 4 shows the average power PA of a fundamental
periodic orbit (FPO) which corresponds to the fixed point
p1 in Fig. 3. As γ reaches the first period doubling bifur-
cation set D1 and decreases, the FPO is changed from SPO
to UPO and the PA has the peak (i.e., MPP) at γ = 0.884,
namely the MPP for γ (∂PA/∂γ = 0). The M is one-to-
one on the γ versus X− plane and gives the ridge of the PA

characteristics shown as Fig. 5.
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Figure 4: Average power characteristics for α = 0.5, β =
9.0, q = 1.6 and X− = 0.7. FPO shows characteristics
of the stable/unstable FPO. The maximum average power
PA = 0.909 is obtained when γ = 0.884.
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Figure 5: Parameter sets of bifurcation and MPP for α =
0.5, β = 0.9 and q = 1.6. (a) D1: the period doubling
bifurcation set. M: ridge of the average power of FPO.
(b) The average power PA corresponding to each parameter
set.

3.2. Multi-Objective function

We define multi-objective functions for finding desired
parameter set with MPP of the SDS. Since bifurcation anal-
ysis in the 5-dimensional parameter space corresponding to
particle position ~ai in the PSO is extremely hard, we focus
on 2-dimensional parameters ~a ≡ (a1, a2) ≡ (γ, X−) which
control the switching. The search space Ds is defined as
0 < a1 ≤ 2 and 0.3 < a2 ≤ 0.9. For convenience, we con-
sider the cross-point of the parameter set M (the MPP for
γ) and the period doubling bifurcation set D1 as the target
parameter of the PSO; it is a border of stability of the FPO
with MPP for γ. Note that PA increases as γ decreases and
as X− increases. However, since γ depends on the clock pe-
riod T and device speed as Eq. (10), the circuit with small
γ is unrealizable.

We then define two objective functions. The first one is
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about the MPP for γ. Whether ~a is the MPP is obtained by
calculating of the slope on present position as

F1(~a) =

∣∣∣∣∣∣∂PA(~a)
∂γ

∣∣∣∣∣∣ =
∣∣∣∣∣∣∂PA(~a)
∂a1

∣∣∣∣∣∣ . (15)

F1(~a) = 0 means that ~a generates the maximum average
power on γ, namely a1. The second objective function
evaluates whether ~a is the period doubling bifurcation set
according to

F2(~a) = |D f (p1)| − 1. (16)

F2(~a) = 0 means that ~a is the period doubling bifurcation
set D1 shown in Fig. 5, in other words, the system with ~a
supplies larger power than that of the SPO. If we can min-
imize both F1 and F2, we can obtain the realizable output
having desired power.

By substituting F1 and F2 into Eqs. (5) and (6) in Step 4,
the proposed algorithm is available for the SDS. Then, the
renewal condition of pbesti and gbest is described by

~api = ~ai(n + 1) if(
F1(~ai(n + 1)) < F1(~api ) OR F1(~ai(n + 1)) < C1

)
,

AND(
F2(~ai(n + 1)) < F2(~api ) OR F2(~ai(n + 1)) < C2

)
,

(17)

~ag = ~api if(
F1(~api ) < F1(~ag) OR F1(~api ) < C1

)
,

AND(
F2(~api ) < F2(~ag) OR F2(~api ) < C2

)
.

(18)

Note again that if more than one particle satisfies Eq. (18),
the particle i with the smallest index is chosen. The termi-
nating condition Eq. (3) is given by

F1(~ag) < C1 AND F2(~ag) < C2, (19)

4. Numerical experiments

For numerical experiments, we use the following param-
eters;

N = 30, w = 0.7, ρ1 = ρ2 = 1.5, nmax = 1500.

C1 = 2.5e−4, C2 = 5.0e−4.

Figure 6 shows typical changes of the average power PA

of gbest and typical fitness functions in the searching pro-
cess. The obtained result is the average power PA = 0.8182
with γ = 1.6463 and X− = 0.4823. From Fig. 6(b), we can
observe that the two fitness functions converged on the cri-
terion C1 and C2, not only decreasing, but also increasing.
This effect was caused by the two criterion in Eqs. (17) and
(18). Each decrease of the two fitness helps other increase,
and this effect leads the PA to the maximum average power
with the realizable parameters. Figure 5 shows the parame-
ter ~ag obtained by the simulation. From this figure, we can
say that the proposed algorithm has found the intersection
of M and D1, namely the desired parameter.
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Figure 6: Search process for α = 0.5, β = 0.9 and q =
1.6. (a) Change of the average power of gbest. (b) Search
process of F1(~ag) and F2(~ag). F1 and F2 reached C1 and
C2 at n = 63 and 875, respectively.

5. Conclusions

This study has proposed the application of the PSO to
finding the desired parameters of the SDS. In order to find
the desired parameters, we have defined the MOP which
evaluates the average power of the system and whether the
parameters are realizable. Performing basic numerical ex-
periments, we have confirmed the algorithm efficiency.
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