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Abstract—A nonlinear system driven by multiple weak
periodic input signals with different frequency components
and a noise signal sometimes generates an output signal
with frequency components that are not included in the in-
put frequency components. Such a phenomenon is called
a ghost stochastic resonance (GSR). In this paper, we gen-
eralize a digital spike neuron model that is described by an
asynchronous cell automaton so that the model includes a
leak current effect. It is shown that the generalized model
can show a GSR whose characteristics is quite similar to
that in one of the representative previous works.

1. Introduction

Stochastic resonance (SR) is a phenomenon wherein a
weak periodic input signal including a particular non-zero
level of noise signal improves the response of a nonlinear
system [1]. Especially, we consider the case where multiple
weak periodic input signals with different frequency com-
ponents and a noise signal are input to a nonlinear dynam-
ical system. Then, the system sometimes generates an out-
put signal with frequency components that are not included
the input frequency components. Such a phenomenon is
called a ghost stochastic resonance (GSR) that has been ob-
served in many nonlinear systems, e.g. , a model that fires
a spike when an input signal exceeds an ignition threshold,
a monostable Schmit trigger electronic circuit, and pulse-
coupled excitable systems [2]-[5]. In this paper, we focus
on a digital spike neuron (DSN) [6]-[7]. The DSN is a
wired system of shift registers. The DSN has an internal
clock and an input spike-train that may not synchronize,
i.e., the DSN operates in an asynchronous mode. The DSN
can exhibit various bifurcation phenomena and response
characteristics to the input spike-train.

In this paper, we generalize the DSN so that the model
includes a leak current effect. It is shown that the general-
ized model can show a GSR whose characteristics is quite
similar to that in one of the representative previous works
[2].

2. Degital Spike Neuron

In this section we present a generalized digital spike
neuron (DSN). As shown Fig.1(a), the DSN consists of
three parts: anM-bit one-hot-coded uni-directional register
(rhythm register) ; anN-bit one-hot-coded uni-directional

register (membrane register) ; and wires from a rhythm reg-
ister to a membrane register. First, we explain dynamics of
the rhythm register. Each bit of rhythm register has a bi-
nary state{0,1}, and the rhythm register is one-hot-coded.
The rhythm register commonly accept the following inter-
nal clock C(t),

C(t) =

{
1 if t=c0, c1, c2, . . . ,
0 otherwise,

(1)

where we define an internal clock interval∆c ≡ cn+1 − cn.
Then dynamics of the rhythm register is described as fol-
lows,

P(cn+1) =

{
P(cn) + 1 if P(cn) , M − 1,
0 if P(cn) = M − 1,

n = 0,1,2, . . . .
(2)

whereP(t) ∈ {0,1, . . . ,M−1} is a hot bit of rhythm register
(integer state) , andP(0) = 0 is initial P(t). The stateP(t)
oscillates periodically with periodM.

Second, we explain the wires from rhythm register to a
membrane register. We introduce a wiring functionA(i) ,
that means which bit of membrane register is connected to
i-th rhythm register by the wire. For example, when 5-th
rhythm register and 4-th membrane register are connected
by the wire,A(4) = 3 (because i starts from 0). And we
define a parameter vectorA ≡ (A(0),A(1), . . . ,A(M − 1))
as the wiring pattern. In the case of Fig.1(a) the wiring
pattern isA = (0,1,2,3,3,2,1). Using the wiring function
A(i), a following signalB(t) is defined as follows.

B(t) = A(P(t)). (3)

We refer toB(t) as a base signal. The base signal is a reset
value when the DSN fires. In Fig.1(b) a base signalB(t) is
illustrated by white circles.

Third, we explain dynamics of the membrane register.
Each bit of membrane register has a binary state{0, 1} , and
the membrane register is one-hot-coded. The membrane
register accepts the internal clockC(t) and the input stimu-
lationS(t). S(t) is described as follows.

S(t) =

{
1 if t=τ0, τ1, τ2, . . . ,
0 otherwise.

(4)

AcceptingC(t) andS(t) , dynamics of the membrane reg-
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Figure 1: (a) Generalized DSN (M = 7, N = 7). (b) Basic
dynamics of the generalized DSN.

ister is described as follows,

X(t+) =


X(t) + 1 if S(t+) = 1 andX(t) , N − 1,
B(t+) if S(t+) = 1 andX(t) = N − 1,
X(t) − 1 if C(t+) = 1 andX(t) , 0,N − 1,
X(t) if C(t+) = 1 andX(t) = 0,N − 1.

(5)

whereX(t) ∈ {0,1, . . . ,N − 1} is a hot bit of membrane
register (integer state) , andX(0) = 0 is initial X(t). In
Fig.1(b) a typical waveform of the stateX(t) is illustrated
by black boxes (which corresponds to a membrane poten-
tial). If a stimulation spikeS(t+) = 1 arrives, the black
box is shifted upward (X(t+) = X(t)+ 1), and, if an internal
clock spikeC(t) = 1 arrives, the black box is shifted down-
ward (X(t+) = X(t) − 1). This downward shift corresponds
to a leak current effect and it is a generalized feature of the
DSN. If the black box reaches the top position (which cor-
responds to a firing threshold) att = τn, we definetm ≡ τn,
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Figure 2: Time waveforms of the DSN.M = 7, N = 7, A =
(0, 1, 2, 3, 3, 2, 1). (a) The case without noise spike-trainN(t). (b)
The case with noise spike-trainN(t).

and the black box att = τn+1 is reset to the position of the
white circle (B(τn+1)). This reset action gives nonlinearity
to the DSN. Att = tm, the DSN outputs a spikeY(tm) = 1.
After the reset, the black box is shifted upward or down-
ward. Repeating suchshift-and-firedynamics, the DSN
generates the following output spike-trainY(t) as shown in
Fig.1(b),

Y(t) ≡
{

1 if X(t) = N − 1 andC(t) , 1,
0 if otherwise,

t = τ0, τ1, τ2, · · · .
(6)

where we define an output spike interval∆n ≡ tn − tn−1 .
The shift-and-reset dynamics corresponds to the integrate-
and-fire dynamics of the neuron model.

3. Ghost Stochastic Resonance

We show that the generalized DSN can show a GSR and
its characteristics is quite similar to that in an analog easy
neuron model [2]. In this paper, an input stimulationS(t) is
a spike-train generated by logically summing two density-
modulated spike-trainsF1(t) andF2(t) and a noise spike-
train N(t) that are described as follows,

F1(t) = Spike-train whose average spike density isα1

and instantaneous spike density is
α1(1+ β1 cos(2π f1t)),
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F2(t) = Spike-train whose average spike density isα2

and instantaneous spike density is
α2(1+ β1 cos(2π f2t)),

N(t) = Random spike-train
whose average spike density isp.

whereα1 andα2 represent average spike densities ofF1(t)
andF2(t), andβ1 andβ2 represent degrees of modulations.
So the input stimulationS(t) is described as follows,

S(t) = F1(t) + F2(t) + N(t). (7)

where “+” means the logical sum. Hence the input stimula-
tion S(t) has a multiple weak periodic signals with different
frequency componentsf1 and f2 and a noise signal. We de-
termine parameters ofS(t) so that the model doesn’t gener-
ate output spikes without a noise spike-trainN(t) (Fig.2(a))
and the model generates output spikes (Fig.2(b)) with a
noise spike-trainN(t). We define a noise intensityσ as
follows.

σ ≡ Average spike density ofN(t)
Average spike density ofS(t)

. (8)

We define then-th instantaneous output frequencyfout(n)
as follows.

fout(n) =
1
∆n
. (9)

In order to make a histograms of the output frequency
fout(n), we define the bins as follows.

I i =

(
1

(imax− i)δ
,

1
(imax− i − 1)δ

]
, I0 =

(
0,

1
imaxδ

]
,

i = 1,2, . . . , imax− 1, imax= 499, δ = 0.01.
(10)

Then we define a histogramsh(i) as follows.

h(i) = Number of output frequenciesfout(n)
that are included in thei-th bin I i .

(11)

Fig.3 shows typical histogramsh(i). In the case of Fig.3(a),
the noise intensity isσ = 0.1083 and the histogramsh(i) al-
most has no peaks. In the case of Fig.3(b), the noise inten-
sity isσ = 0.1974 and the histogramsh(i) has small peaks.
In the case of Fig.3(c), the noise intensity isσ = 0.2726
and the histogramsh(i) has a large peak atfout ≃ 1. Re-
call that the input stimulationS(t) has the two frequency
componentsf1 = 2 and f2 = 3 that do not appear in the
histogramsh(i) of the output frequencyfout. In the case
of Fig.3(c), the noise intensity isσ = 0.3337 and the his-
togramsh(i) has many peaks that are smaller than the peak
in Fig.3(c). From the above results, we can say the DSN
exhibits a GSR.

Next, we study characteristics of the GSR for the noise
intensityσ. For this purpose, we define ak-local histogram
hk(i) of the histogramh(i) as follows.

hk(i) ≡
 i+k∑

j=i−k

h( j)

 /
imax−1∑

j=1

h( j)

 . (12)

Note that the argumenti of the k-local histogramhk(i) is
the index of the binIi , i.e., i corresponds to the output
frequency fout. Fig.4 shows characteristics of thek-local
histogramhk(i) for the noise intensityσ and the output
frequency fout. It can be seen that the output frequency
fout = f2 − f1 can be detected in the output frequenciesfout

for a certain range 0.15 < σ < 0.25 of the noise inten-
sity. On the other hand, the output frequenciesf2 and f1
cannot be detected in the output frequenciesfout for a wide
range of the noise intensityσ. From the above results, we
can again say the DSN exhibits a GSR. Fig.5 shows char-
acteristics of the instantaneous output frequencyfout(n) for
the input frequency componentf1, where another input fre-
quency componentf2 is given by f2 = f1+1. In this figure,
the dotted line is a theoretically predicted characteristics
of an instantaneous output frequency of an analog neuron
model [2]. It can be seen that our DSN can reproduce the
characteristics of the GSR of the analog neuron model.

4. Conclusions

In this paper, we have proposed a generalized DSN that
is described by an asynchronous cell automaton and in-
cludes a leak current effect. It has been shown that the DSN
can exhibit GSRs and their characteristics are quite simi-
lar to those of an analog neuron model. Future problems
include the following ones: (a) more detailed analysis of
the GSR, (b) FPGA implementation of the neuron, and (c)
comparing with other discrete models [6]-[7]. The authors
would like to thank Professor Toshimitsu Ushio of Osaka
University for valuable discussions. This work is partially
supported by the Center of Excellence for Founding Am-
bient Information Society Infrastructure, Osaka University,
Japan and by KAKENHI (21700253).
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Figure 3: Typical histogramsh(i). σ =(a) 0.1083, (b) 0.1974, (c) 0.2726, (d) 0.3337,α1 = 0.667,α2 = 0.667,β1 = 0.9,
β2 = 0.9, f1 = 2, f2 = 3, M = 7, N = 7, A = (0,1,2,3,3,2,1),∆c = 0.01, t = 0～100.
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Figure 4: Characteristics of thek-local histogramhk(i) for
the noise intensityσ and the output frequencyfout. f1 = 2
(h4(50)), f2 = 3 (h4(100)), f2− f1 = 1 (h2(33)),α1 = 0.667,
α2 = 0.667, β1 = 0.9, β2 = 0.9, M = 7, N = 7, A =
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Figure 5: Characterisitcs of the instantaneous output fre-
quency fout(n) for the input frequency componentf1. f2 =
f1 + 1, σ = 0.2726,M = 7, N = 7, A = (0,1,2,3,3,2,1),
∆c = 0.01, t = 0～100.
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