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Abstract—A nonlinear system driven by multiple weak register (membrane register) ; and wires from a rhythm reg-
periodic input signals with dierent frequency componentsister to a membrane register. First, we explain dynamics of
and a noise signal sometimes generates an output sigtta rhythm register. Each bit of rhythm register has a bi-
with frequency components that are not included in the imary statg0, 1}, and the rhythm register is one-hot-coded.
put frequency components. Such a phenomenon is call&tie rhythm register commonly accept the following inter-
a ghost stochastic resonance (GSR). In this paper, we gearal clock C(t),
eralize a digital spike neuron model that is described by an

asynchronous cell automaton so that the model includes a 1 ift=cp,Cy 0o, ...,

leak current fect. It is shown that the generalized model c) = { 0 otherwise, @)

can show a GSR whose characteristics is quite similar to

that in one of the representative previous works. where we define an internal clock interve = cn.1 — Cn.
Then dynamics of the rhythm register is described as fol-
lows,

1. Introduction
P(ch)+1 if P(c)) # M -1,
Stochastic resonance (SR) is a phenomenon wherein a  P(Cni1) = { 0 if P(c) =M —1 @)
weak periodic input signal including a particular non-zero ’
level of noise signal improves the response of a nonlinear n=012....
system [1]. Especially, we consider the case where multiple . . .
weak periodic input signals with fierent frequency com- whereP(t) € {0, 1,..., M—1} is a hot bit of rhythm register

ponents and a noise signal are input to a nonlinear dynarw—n?ger state_) ' z_m@(O) - Ois _|n|t|al P(t). The stateP(t)
?ﬁglllates periodically with periot¥l.

ical system. Then, the system sometimes generates an 0 4 i .

put signal with frequency components that are not included Second, we gxplaln th? wires from rhythm register to a
the input frequency components. Such a phenomenonr]l‘:"mbr"’me register. We introduce a wirng _functm@) '
called a ghost stochastic resonance (GSR) that has been Bt méans which bit of membrane register is connected to

served in many nonlinear systems, e.g. , a model that firk&" rhythm register by the wire. For example, when 5-th

a spike when an input signal exceeds an ignition thresholfYt™ register and 4-th membrane register are connected

a monostable Schmit trigger electronic circuit, and pulsd?Y the wire,A(4) = 3 (because i starts from 0). And we
coupled excitable systems [2]-[5]. In this paper, we focugefine a pgrameter vectdr = (A(0), A1), e AM — 1)), ,
on a digital spike neuron (DSN) [6]-[7]. The DSN is a2S the wiring pattern. In the case of F|g:;(a) the wiring
wired system of shift registers. The DSN has an interndattern isA = (0,1,2,3,3,2,1). Using the wiring function
clock and an input spike-train that may not synchronize/\(i): & following signalB(t) is defined as follows.
i.e., the DSN operates in an asynchronous mode. The DSN
can exhibit various bifurcation phenomena and response
characteristics to the input spike-train.

In this paper, we generalize the DSN so that the mod
includes a leak currentfect. It is shown that the general- . o
ized model can show a GSR whose characteristics is quﬂg's”ated by white circles.

similar to that in one of the representative previous works Third_, we explain dyna_mics of the _membrane register.
2]. Each bit of membrane register has a binary stat&} , and

the membrane register is one-hot-coded. The membrane
register accepts the internal cloCkt) and the input stimu-
2. Degital Spike Neuron lation S(t). S(t) is described as follows.

B(t) = A(P(1)). 3

é_(ye refer toB(t) as a base signal. The base signal is a reset
value when the DSN fires. In Fig.1(b) a base sigB@) is

In this section we present a generalized digital spike 1 ift=to, 71, T2 ...,
neuron (DSN). As shown Fig.1(a), the DSN consists of S(t) ={ 0 otherwise. (4)
three parts: aM-bit one-hot-coded uni-directional register
(rhythm register) ; arN-bit one-hot-coded uni-directional AcceptingC(t) andS(t) , dynamics of the membrane reg-
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Figure 2: Time waveforms of the DSNM = 7, N = 7, A =
@ ) (0,1,2,3,3,2,1). (a) The case without noise spike-tra(t). (b)
O ) O The case with noise spike-traif(t).
1 Ol O
0 ] O , .
01 M- 1 and the black box at= 7,1 is reset to the position of the
.t white circle B(m.1)). This reset action gives nonlinearity
A, A, A, to the DSN. Att = t,, the DSN outputs a spiké(t,) = 1.
Y(b)f After the reset, the black box is shifted upward or down-
t, t, t, t, ward. Repeating suckhift-and-firedynamics, the DSN
generates the following output spike-tradft) as shown in
Fig.1(b),
Figure 1: (a) Generalized DSNM = 7, N = 7). (b) Basic
dynamics of the generalized DSN. (1 ifX{®)=N-2landC@t) %1,
Y(t) = . A
0 if otherwise (6)
ister is described as follows, t=10,71, 72, - .
X(@)+1 if S(t*) = LandX(t) # N -1, where we define an output spike interve = t, — th1 .
X(t) = B(t")  if S(t) = LandX(t) =N -1, (5) The shift-and-reset dynamics corresponds to the integrate-
X -1 ifC(t*) =1andX(t) #0,N -1, and-fire dynamics of the neuron model.

X(t) if C(t*) = 1 andX(t) = O,N — 1.

whereX(t) € {0,1,...,N — 1} is a hot bit of membrane 3. Ghost Stochastic Resonance

register (integer state) , ar¥{0) = 0 is initial X(t). In .

Fig.1(b) a typical waveform of the stad{t) is illustrated . We show t_ha_t th? ger)eralllzgd DSN can show a GSR and
by black boxes (which corresponds to a membrane potepi‘?’ characteristics is quite similar 0 that n an analog easy
tial). If a stimulation spikeS(t*) = 1 arrives, the black nheuron quel [2]. Inthis paper, an Input stl.mulatB@) IS
box is shifted upwardX(t*) = X(t) + 1), and, if an internal 2 SPike-train generated by logically summing two density-
clock spikeC(t) = 1 arrives, the black box is shifted down- modulated spike-traina(t) and F(f) and a noise spike-
ward X(t*) = X(t) — 1). This downward shift correspondstram N(t) that are described as follows,

to a leak currentféect and it is a generalized feature of the F,(t) = Spike-train whose average spike densityis
DSN. If the black box reaches the top position (which cor- and instantaneous spike density is
responds to a firing threshold) et 7, we definety, = 7, a1(1 + B1 cos(2r f1t)),

-319-



F.(t) = Spike-train whose average spike densityis
and instantaneous spike density is

02(1 + Bl COS(27T fzt)),

N(t) = Random spike-train

whose average spike densityps
wherea; anda, represent average spike densitie$-oft)

Note that the argumertof the k-local histogramh(i) is
the index of the binf;, i.e., i corresponds to the output
frequencyfoy. Fig.4 shows characteristics of thedocal
histogramhy(i) for the noise intensityr and the output
frequencyfyy. It can be seen that the output frequency
fout = f2 — f1 can be detected in the output frequendigs
for a certain range .Q5 < o < 0.25 of the noise inten-

andF(t), andB; andg, represent degrees of modulationssity_ On the other hand, the output frequenciggnd f;

So the input stimulatios(t) is described as follows,

S(t) = Fa(t) + Fa(t) + N(1). (7)

cannot be detected in the output frequendigsfor a wide
range of the noise intensity. From the above results, we
can again say the DSN exhibits a GSR. Fig.5 shows char-

where “+” means the logical sum. Hence the input stimula@cteristics of the instantaneous output frequefagyn) for

tion S(t) has a multiple weak periodic signals witHigrent

the input frequency componefit, where another input fre-

frequency components andf, and a noise signal. We de- quency componerfs is given byf, = f; +1. In this figure,
termine parameters &(t) so that the model doesn’t gener-the dotted line is a theoretically predicted characteristics

ate output spikes without a noise spike-trhiitt) (Fig.2(a))

of an instantaneous output frequency of an analog neuron

and the model generates output spikes (Fig.2(b)) with @odel [2]. It can be seen that our DSN can reproduce the

noise spike-trailN(t). We define a noise intensity as
follows.

Average spike density ofi(t)

Average spike density @(t) ®

o =

We define then-th instantaneous output frequen€y,(n)

as follows. 1

fout(n) = A_n . (9)

characteristics of the GSR of the analog neuron model.

4. Conclusions

In this paper, we have proposed a generalized DSN that
is described by an asynchronous cell automaton and in-
cludes a leak currenttect. It has been shown that the DSN
can exhibit GSRs and their characteristics are quite simi-
lar to those of an analog neuron model. Future problems

In order to make a histograms of the output frequencipclude the following ones: (a) more detailed analysis of

fout(n), we define the bins as follows.
1 1 1
[ S
('max_ |)6 ('max_ I = :I-)(S Imaxd (10)
i =1,2,...,imax_1, |maX=499, 6=00]_

Then we define a histograr§) as follows.
h(i) = Number of output frequenciefg,(n)

that are included in thith bin .. 11)

Fig.3 shows typical histogranti). In the case of Fig.3(a),

the noise intensity is- = 0.1083 and the histograngi) al-

the GSR, (b) FPGA implementation of the neuron, and (c)
comparing with other discrete models [6]-[7]. The authors
would like to thank Professor Toshimitsu Ushio of Osaka
University for valuable discussions. This work is partially

supported by the Center of Excellence for Founding Am-
bient Information Society Infrastructure, Osaka University,
Japan and by KAKENHI (21700253).

References

[1] J.J. Collins, Carson C. Chow, and Thomas T. IfihtStorchastic resonance
without tuning,” Nature, vol. 376, 1995.

D. R. Chialvo, O. Calvo, D. L. Gonzalez, O. Piro, and G. V. Savino, “Subhar-

most has no peaks. In the case of Fig.3(b), the noise intet?
sity iso- = 0.1974 and the histograni) has small peaks.
In the case of Fig.3(c), the noise intensityois= 0.2726
and the histogrami(i) has a large peak dt, ~ 1. Re-
call that the input stimulatios(t) has the two frequency
componentsf; = 2 andf, = 3 that do not appear in the [4]
histogramsh(i) of the output frequencyo,. In the case
of Fig.3(c), the noise intensity i = 0.3337 and the his- [5]
togramsh(i) has many peaks that are smaller than the peak
in Fig.3(c). From the above results, we can say the DSN
exhibits a GSR. (6]
Next, we study characteristics of the GSR for the noise
intensityo. For this purpose, we definekdocal histogram 7
hg(i) of the histograrm(i) as follows.

h(j)]/[i h(j)].

3

i+k
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Figure 3: Typical histogramis(i). o =(a) 0.1083, (b) 0.1974, (c) 0.2726, (d) 0.3337,= 0.667,a, = 0.667,3; = 0.9,
B2=09f=2,=3M=7,N=7,A=(0,1,2,3,3,2,1),A. =0.01,t = 00 100.
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Figure 4: Characteristics of thelocal histogranhy(i) for  Figure 5: Characterisitcs of the instantaneous output fre-
the noise intensity- and the output frequenciy. f1 =2  quencyfou(n) for the input frequency componefit. f, =
(h4(50)), f2 = 3 (h4(100)), f2— f1 = 1 (h2(33)),a1 = 0.667, f;+1,0=0.2726M =7,N=7,A=(0,1,2,3,3,2,1),

ap» = 0667,61 = 09,8, =09, M =7,N=7,A= A.=001,t=00100.

(0,1,2,3,3,2,1), Ac = 0.01,t = 00 100.
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