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Abstract—Many systems with discrete events triggeredwo-dimensional autonomous systems coupled by periodi-
by certain conditions, e.g., their states mmdime, have cal switching mechanism described as follows[3]:
been proposed in various fields. We previously proposed

a method to clarify bifurcation structures of the system in- dxy )
cluding periodical switching event, because it iffidult dt ’ @
to analytically solve bifurcation pointsurves for such sys- % = fo(x2, A)
tem. In this paper, by using our proposed method, we in- dt o

vestigate bifurcation phenomena in BVP oscillators cou-

2 i _
pled by periodical switching device in both simulation and’Vheret €R a_nd X1, Xz € R Qenote time ano! state vec
real circuit tor of two oscillators, respectively. The solutions of each

oscillator are represented as follows:

1. Introduction X1(t) = (X (1), y1(1)) = (pa(t, Xk, 1), pa(t, Xk, 1)) 2)
X2(t) = (%2(1), Y2(1)) = (p2(t, X2k, 4), P2(t, Xk, 1)) -

Dynamical systems with intermittent activities generated ) .
by discrete events have been proposed or observed in vAjoreover, a solution of the whole system is represented as
ious fields such as electric circuits, mechanical system@!lOWs:
and biological systems[1, 2]. From the standpoint of fun-
damental studies and engineering applications, it is very
important to clarify a stability and a qualitative property . .
of solutions in such systems. However, these systems i herexy andxy are solutions at = KT. In addition, at
clude a non-dferentiable point(s) in a solution orbit, and, ~ KT, X1k and xp jump to a mean value ol and Xx
therefore, it is generally flicult to analytically solve the by switching event, and they. andyx hold the value

stability and bifurcation points of equilibria and periodi att_: .kT' He_re|r_1afte_r, we show a stability analysis of a
solutions. periodic solution in this system.

In our previous study[3], we have proposed a shootin
method to calculate local bifurcation poirfdgrves for self-
excited oscillators coupled by periodical switching devic
As an application example of proposed method, we de-
veloped periodically switch-coupled BVP oscillators and
showed the validity of the shooting method for circuit
equations of this oscillators. However, detailed bifurca-
tion structures of circuit equations are not clarified, and
it is not investigated whether the real circuit shows same
bifurcations. Therefore, we investigate detailed bifticra
structures of circuit equations and show that real circast h
same bifurcation structure.

Xk = (X1, X2k), 3

3.2. Periodic solution and Poincaé map

kT (k+1)T (k+2T

2. Method Figure 1: Schematic diagram of a solution in this model.

2.1. Periodically switch-coupled system . ] .
Let us consider a trajectory of the system in order to con-
In this paper, we introduce a method to analyze local bstruct a Poincd@& map. Figurel shows a schematic illustra-

furcations of the system with discrete event consisting dfons of a trajectory of each oscillator. The maps of each
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[ 0p1ke1)  OP1ke1)  O01(ke1) 0
system at = kT, P; andP,, are represented as follows: 20%1k OV 20%1x
) ) OP1k+1)  OPrke1)  OP1(ksd) 0
PLiRT >R 20% 0yy  20%
Xa + X =1 4 P 9 (10)
Xk > Xqg = (71k5’1k) - ( 1k 2k’y1k] ‘102(_k+1) 0 9029@1) 902_(k+1)
) ) 2 (@) 20% 20% Yox
P2:R° >R Op2(k+1) 0 Opos1)  Odho(ke1)
- - - Xik + X 20X 20% ay
Xok > Xk = (sz, sz] = [% 2k], ) & 2k Va
The characteristic equation is described as follows:
The mapP of the whole system is defined as follows: x(W) = |uls—DM(x) = 0. (11)
PR R Note that eigenvalues of the Jacobian matrix correspond
Xk > Xk = (Xako X2k) = ((Rako Vi) » Rk Vo) - ®)  tothe stability of the periodic solution. To calculate Ibifu

cation parameters, the equations combined Eqgs. (9) and
The solution that left the map behaves individually ac- (11) are simultaneously solved with respect to unknown
cording to the dynamics of each system unt (k + 1)T.  variables g, 2).
Therefore, The map of a solution orbit that I&t on the

mapP can be described as the following map 3. Periodically switch-coupled BVP oscillators
S:R*> R*
Xk - Xkr1) = (Xaer1)s Xor1)) (6) tflkT
= ((Xar)s Vi) » (Xos1) Yok 1)) » SW_v

where the maps5;andS,, are written as follows:

S1:R? 5 R?
Xk = X1gey=X1((K+ DT)=(X1+1)s Y1k 1))
=(901(k+1)(T, X1k, A),
1+ 1) (T, Xaks /l)) ___________
S, R - R? ()
Xok = Xor1y=X2((K + 1)T)=(Xo+1), Yok 1)) '
=(902(k+1)(T, Xok, A),
P2+ 1)(T, Xoks /l))~

Figure 2: Periodically switch-coupled BVP oscillators.

Eventually, the Poincarmap of the whole system is de- Figure 2 shows the periodically switch-coupled BVP os-
fined by a composite of two submaps (5) and (6) as followsillators. The circuit equations of this system are desttib

as the following equations:
M:R*—> R

8 dv: .
Xi > Xy = S 0 P(X0). ®) e _ i - gw)
ft (12)
: . . _ . diy _ - : 0SC.1
A fixed point of the composite PoindamapM satisfy LE =Vi-TIihh
the following equation: dv

M(x Xk =0 9 Cd_t2 =2 o) 13
(4 = % = 0. ®) a2 oscz ¥

= V2 212

In general, this fixed point condition is not analytically dt
solvable as usual for nonlinear systems. It can be numetherevy, v, andiy, i, denote the voltages and currents of
ically solved with respect to unknown variablesby us- €ach BVP oscillators, respectively. The nonlinear resssto
ing numerical methods such as Newton’s method. Mored(Vi) are written by the following equation:

over, the following first-order derivatives of the map

) = —atanhpv;; i=12 14

are needed to calculate the fixed point by using Newton’s 9(v) atanhfvi; (14)
method: By using the following variable transformation to Eqgs.(12)

and (13):
DM(x) oM 89S 6P
KT Oxe | 0% 0x, 1 1. .
O OX O X =SSV Y= i k=D =12 (1)
a VL a L
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1 L
T:\/T_Ct,yzaﬂ\/;, (16)

we obtain the normalized equations: 1
S
A
% =-Yy1+ tanf’yxl
-
d a7)
% = X1 — kiy1
% = -y, + tanhyx,
7 18)
d (
% = X2 — kaYa.
-

The switching system is driven by the periddexternal

pulses. Solution orbitg; andx, of oscillators jump to the T
average valuexg + X2)/2 when the switch is activated, be- ~
cause each oscillator has the capacitor of the same value.
The variabley; andy, are not changed at the moment. On

the other hands, When the switch is not activated, solution
orbits behave individually by the dynamics of each oscilla-

tor. An example of solution orbits of this system is shown

as Fig.3.

Figure 4: Simulation and experimental resultsrat =
270[Q](ky = 0.4) andr, = 4585[Q](k, = 0.68).

X2k+2)
Xak+1)+Xoger)
2

; p Xtz enen 5 © () (@
| §X2(k+1) 4L P : |
N ]
¢ ¢ ) vt ol ,
KT (k+1)T (k+2)T
1r |
X1k+1) 1 ol |
=
Xaryt Xo(k+1) -1 F i i : b
! 2 Xi+2)+ Xoger2) 2L : : 4
2 ]
| §X1(k+2)\ B ]
“f 1
T ¢ ? },.[: _5 1 i i 1 i 1 1 1
KT (k+1)T (k+2)T 0 0.5 1 1.5 2 2.5 3

Figure 3: An example of solution orbits
Figure 5: One-parameter bifurcation diagrankat 0.4.

By fixing the parameter€ = 22[nF], L = 10[mH], 4. Results
rp = 270[Q] andr, = 4585[Q], we obtain the parame-
ter valuesy; = 1.567,y, = 1.666,k; = 0.4 andk, = 0.68, Figure 5 shows a one-parameter bifurcation diagram in
respectively. Moreover, we set the period of external pulseg -k, plane wherk; is fixed to 04. To confirm that the real
to T = 2000[us]. In this parameter, we shows a simulatiorcircuit shows the same bifurcation structures, we investi-
result and behavior of real circuit in Fig.4. gate periodic solutions around three dashed lines (a), (b)
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Figure 6: Bifurcations and some phase planes of the sinoulatid experiment.

and (c) as shown in Fig.6. By the saddle-node bifurcatioAcknowledgments
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