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Abstract—Many systems with discrete events triggered
by certain conditions, e.g., their states and/or time, have
been proposed in various fields. We previously proposed
a method to clarify bifurcation structures of the system in-
cluding periodical switching event, because it is difficult
to analytically solve bifurcation points/curves for such sys-
tem. In this paper, by using our proposed method, we in-
vestigate bifurcation phenomena in BVP oscillators cou-
pled by periodical switching device in both simulation and
real circuit.

1. Introduction

Dynamical systems with intermittent activities generated
by discrete events have been proposed or observed in var-
ious fields such as electric circuits, mechanical systems,
and biological systems[1, 2]. From the standpoint of fun-
damental studies and engineering applications, it is very
important to clarify a stability and a qualitative property
of solutions in such systems. However, these systems in-
clude a non-differentiable point(s) in a solution orbit, and
therefore, it is generally difficult to analytically solve the
stability and bifurcation points of equilibria and periodic
solutions.

In our previous study[3], we have proposed a shooting
method to calculate local bifurcation points/curves for self-
excited oscillators coupled by periodical switching device.
As an application example of proposed method, we de-
veloped periodically switch-coupled BVP oscillators and
showed the validity of the shooting method for circuit
equations of this oscillators. However, detailed bifurca-
tion structures of circuit equations are not clarified, and
it is not investigated whether the real circuit shows same
bifurcations. Therefore, we investigate detailed bifurcation
structures of circuit equations and show that real circuit has
same bifurcation structure.

2. Method

2.1. Periodically switch-coupled system

In this paper, we introduce a method to analyze local bi-
furcations of the system with discrete event consisting of

two-dimensional autonomous systems coupled by periodi-
cal switching mechanism described as follows[3]:
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(1)

wheret ∈ R and x1, x2 ∈ R2 denote time and state vec-
tor of two oscillators, respectively. The solutions of each
oscillator are represented as follows:

x1(t) = (x1(t), y1(t)) = (ϕ1(t, x1k, λ), φ1(t, x1k, λ))
x2(t) = (x2(t), y2(t)) = (ϕ2(t, x2k, λ), φ2(t, x2k, λ)) .

(2)

Moreover, a solution of the whole system is represented as
follows:

xk = (x1k, x2k), (3)

wherex1k and x2k are solutions att = kT . In addition, at
t = kT , x1k and x2k jump to a mean value ofx1k and x2k

by switching event, and then,y1k and y2k hold the value
at t = kT . Hereinafter, we show a stability analysis of a
periodic solution in this system.

2.2. Periodic solution and Poincaŕe map

(k+1)TkT ( )T
clock:
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Figure 1: Schematic diagram of a solution in this model.

Let us consider a trajectory of the system in order to con-
struct a Poincaŕe map. Figure1 shows a schematic illustra-
tions of a trajectory of each oscillator. The maps of each
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system att = kT , P1 andP2, are represented as follows:

P1 : R2→ R2
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(4)

The mapP of the whole system is defined as follows:

P : R4→ R4

xk 7→ xk = (x1k, x2k) =
((

x1k, y1k
)

,
(

x2k, y2k
))

.
(5)

The solution that left the mapP behaves individually ac-
cording to the dynamics of each system untilt = (k + 1)T .
Therefore, The map of a solution orbit that leftxk on the
mapP can be described as the following mapS :

S : R4→ R4

xk 7→ x(k+1) = (x1(k+1), x2(k+1))
=
((

x1(k+1), y1(k+1)
)

,
(

x2(k+1), y2(k+1)
))

,

(6)

where the maps,S 1andS 2, are written as follows:

S 1 : R2→ R2

x1k 7→ x1(k+1)=x1((k + 1)T )=
(

x1(k+1), y1(k+1)
)

=
(

ϕ1(k+1)(T, x1k, λ),

φ1(k+1)(T, x1k, λ)
)

S 2 : R2→ R2

x2k 7→ x2(k+1)=x2((k + 1)T )=
(

x2(k+1), y2(k+1)
)

=
(

ϕ2(k+1)(T, x2k, λ),

φ2(k+1)(T, x2k, λ)
)

.

(7)

Eventually, the Poincaré map of the whole system is de-
fined by a composite of two submaps (5) and (6) as follows:

M : R4→ R4

xk 7→ x(k+1) = S ◦ P(xk).
(8)

A fixed point of the composite Poincaré mapM satisfy
the following equation:

M(xk) − xk = 0. (9)

In general, this fixed point condition is not analytically
solvable as usual for nonlinear systems. It can be numer-
ically solved with respect to unknown variablesxk by us-
ing numerical methods such as Newton’s method. More-
over, the following first-order derivatives of the mapM
are needed to calculate the fixed point by using Newton’s
method:
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.(10)

The characteristic equation is described as follows:

χ(µ) = |µI4 − DM(xk)| = 0. (11)

Note that eigenvaluesµ of the Jacobian matrix correspond
to the stability of the periodic solution. To calculate bifur-
cation parameters, the equations combined Eqs. (9) and
(11) are simultaneously solved with respect to unknown
variables (x, λ).

3. Periodically switch-coupled BVP oscillators

t=kT

L

r

L

v2

i2i1

C
g(v )
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SW

v1

1 r2

g(v )1 2

OSC.1 OSC.2

Figure 2: Periodically switch-coupled BVP oscillators.

Figure 2 shows the periodically switch-coupled BVP os-
cillators. The circuit equations of this system are described
as the following equations:



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













C
dv1

dt
= −i1 − g(v1)

: OSC.1L
di1
dt
= v1 − r1i1

(12)


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
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
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

C
dv2

dt
= −i2 − g(v2)

: OSC.2.L
di2
dt
= v2 − r2i2

(13)

wherev1, v2 and i1, i2 denote the voltages and currents of
each BVP oscillators, respectively. The nonlinear resistors
g(vi) are written by the following equation:

g(vi) = −αtanhβvi; i = 1,2. (14)

By using the following variable transformation to Eqs.(12)
and (13):

xi =
1
α

√

C
L

vi, yi =
1
α

ii, ki = ri

√

C
L

; i = 1,2 (15)
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τ =
1
√

LC
t, γ = αβ

√

L
C
, (16)

we obtain the normalized equations:
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= −y1 + tanhγx1
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dτ
= x1 − k1y1

(17)
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= −y2 + tanhγx2
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dτ
= x2 − k2y2.

(18)

The switching system is driven by the period-T external
pulses. Solution orbitsx1 andx2 of oscillators jump to the
average value (x1 + x2)/2 when the switch is activated, be-
cause each oscillator has the capacitor of the same value.
The variablesy1 andy2 are not changed at the moment. On
the other hands, When the switch is not activated, solution
orbits behave individually by the dynamics of each oscilla-
tor. An example of solution orbits of this system is shown
as Fig.3.
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(k+1)TkT (k+2)T
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2
x1k x2k+

2
x1(k+1) x2(k+1)+

2
x1(k+2) x2(k+2)+

x 2(k+1)

Figure 3: An example of solution orbits

By fixing the parametersC = 22[nF], L = 10[mH],
r1 = 270[Ω] and r2 = 458.5[Ω], we obtain the parame-
ter valuesγ1 = 1.567,γ2 = 1.666,k1 = 0.4 andk2 = 0.68,
respectively. Moreover, we set the period of external pulse
to T = 200.0[µs]. In this parameter, we shows a simulation
result and behavior of real circuit in Fig.4.
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Figure 4: Simulation and experimental results atr1 =

270[Ω](k1 = 0.4) andr2 = 458.5[Ω](k2 = 0.68).
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Figure 5: One-parameter bifurcation diagram atk1 = 0.4.

4. Results

Figure 5 shows a one-parameter bifurcation diagram in
x1-k2 plane whenk1 is fixed to 0.4. To confirm that the real
circuit shows the same bifurcation structures, we investi-
gate periodic solutions around three dashed lines (a), (b)
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Figure 6: Bifurcations and some phase planes of the simulation and experiment.

and (c) as shown in Fig.6. By the saddle-node bifurcation
of the periodic solution of the lines (a) and (b), we confirm
that each period-1 solution is disappeared and then the sys-
tem shows a chaos in both the simulation and experiment.
Moreover, By the period-doubling bifurcation of the line
(c), period-2 solution changes to a period-4 solution, but
this solution is almost simultaneously disappeared by the
saddle-node bifurcation and then the state of this system
shows a period-3 solution. From these results, we clarify
that the circuit equation and the real circuit have the same
bifurcation structure and verify the validity of our proposed
method for this system.

5. conclusion

In this paper, we solved a one-parameter bifurcation di-
agram and confirmed that the circuit equation and the real
circuit have the same bifurcation structure. From the result,
the validity of our proposed method in both simulation and
experiment is verified. As a future works, we will solve
some two-bifurcation diagrams to clarify more detailed bi-
furcation structures by using our method.
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