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Abstract—A particle swarm optimization (PSO) sys-
tem is one of the powerful systems for solving global op-
timization problems. The PSO algorithm can search an
optimal value of a given evaluation function quickly com-
pared with other proposed meta-heuristics algorithms. The
conventional PSO system contains some random factors,
therefore, the dynamics of the system can be regarded as
stochastic dynamics. In order to analyze the dynamics rig-
orously, some papers pay attention to deterministic PSO
systems which does not contain any stochastic factors. Ac-
cording to these results, the eigenvalues of the system im-
pinge on the dynamics of the particles. Depending on the
parameter, the searching ability of the deterministic PSO is
decreased. In order to overcome this, we propose a canon-
ical deterministic PSO which can control its eigenvalues
easily, and can improve the searching ability. We will con-
firm relation between the eigenvalues and the searching
ability of the optimal value from some numerical experi-
ments.

1. Introduction

Searching for an optimal value of a given evaluation
function of various problems is very important in engi-
neering fields. In order to solve such optimization prob-
lems speedily, various heuristic optimization algorithms
have been proposed. Particle swarm optimization (PSO),
which was originally proposed by J. Kennedy and R. Eber-
hart [1],[2], is one such heuristic algorithm. The PSO algo-
rithm is a useful tool for optimization problems[3]-[6].

The original PSO is described as

vt+1
j = wvt

j + c1r1(pbesttj − xt
j) + c2r2(gbestt − xt

j) (1)

xt+1
j = xt

j + vt+1
j (2)

wherew ≥ 0 is an inertia weight coefficient, c1 ≥ 0, and
c2 ≥ 0 are acceleration coefficients, andr1 ∈ [0,1], and
r2 ∈ [0,1] are two separately generated uniformly dis-
tributed random numbers in the range [0,1]. xt

j ∈ ℜN

denotes the location of thej-th particle on thet-th iter-
ation in theN-dimensional space, andvt

j ∈ ℜN denotes
a velocity vector of thej-th particle on thet-th iteration.
pbesttj ∈ ℜN means the location that gives the best value
of the evaluation function of thej-th particle on thet-th it-
eration. gbestt ∈ ℜN means the location which gives the

best value of the evaluation function on thet-th iteration in
the swarm.

The particles in the swarm fly through theN-
dimensional space according with Eqs. (1) and (2). Each
particle shares information of a current optimal value of
the evaluation function and its corresponding location of
the best particle. Also, each particle memorizes its record
of the best evaluation value and its best location. On the ba-
sis of such information, the moving direction and velocity
are calculated by Eq. (1). Namely, all particles will move
toward a coordinate that gives the current best value of the
evaluation function.

In such PSO system, the parameters play very important
role to the searching ability. Therefore, many researchers
study about adequate parameters selecting[7]. The search-
ing ability of such PSO depends on the inertia weight co-
efficient, and the acceleration coefficients. Since the ac-
celeration coefficients are multiplied by a random number,
the system can be regarded as a stochastic system. The
rigorous analysis of such stochastic system is difficult. In
order to analyze the dynamics of such PSO, M. Clerc, and
J. Kennedy proposed a simple deterministic PSO system,
and analyzed its dynamics theoretically[8]. The simple de-
terministic PSO system does not contain stochastic factors,
namely, the random coefficients have been omitted from the
original PSO system. The analysis of such a deterministic
PSO is very important for determining the effective param-
eters of the standard PSO[8]-[9]. We proposed a determin-
istic PSO and analyzed the searching ability of the optimal
value of the given benchmark functions[10]. According to
the results, the dynamics depends on the eigenvalues of the
system[10]. The eigenvalues depend on the inertia weight
coefficient, and the acceleration coefficients. In order to
control the eigenvalues simply, we propose a canonical de-
terministic PSO.

2. Canonical deterministic PSO

The simplicity acceleration coefficients of the determin-
istic PSO system can be described as

pt
j = γpbesttj + (1− γ)gbestt (3)

γ =
c1

c1 + c2
(4)
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(a)∆ = 0.95,θ = 30 [ deg ] (b) ∆ = 0.95,θ = 60 [ deg ] (c) ∆ = 0.95,θ = 180 [ deg ]
w = 0.9025,c = 0.2571 w = 0.9025,c = 0.9525 w = 0.9025,c = 3.8025

Figure 1: The trajectory of the deterministic PSO in the phase spacey− v.
.

wherept
j can be regarded as a desired fixed point.

The parameterγ controls the mixture rate of the local
best and the global best.

Since each dimension variable of the particle is indepen-
dent, we can consider one dimensional case without loss of
generality. Therefore, we consider one dimensional system
hereafter. For one dimensional deterministic PSO can be
transformed into the following matrix form:[

vt+1
j

yt+1
j

]
=

[
w −c
w 1− c

] [
vt

j

yt
j

]
(5)

whereyt
j = xt

j − pt
j andc = c1 + c2.

Note that this system does not contain stochastic factors,
therefore, this system can be regarded as a deterministic
system.

The dynamics of the deterministic PSO is governed by
the eigenvalues of the matrix in Eq. (5). The eigenvalueλ
is given as

λ =
1− c+ w

2
±
√

(1− c+ w)2 − 4w

2
. (6)

If the eigenvalueλ is complex conjugate number, the sys-
tem exhibits remarkable searching ability. Since the system
is discrete-time system, the damping factor∆ and the rota-
tion angleθ on each iteration can be derived by its complex
eigenvalues as

∆ =
√

w (7)

θ = arctan

√
4w− (1− c+ w)2

1− c+ w
(8)

The trajectory in the phase space exhibits spiral motion
as shown in Fig. 1 whose desired fixed point is the origin is
assumed. In the cases of Fig. 1(c), the range of the variable
x becomes wide, and the system can not search around the
origin.

Based on the eigenvalueλ which is expressed in Eq. (6),
we can calculate a translation matrixP. By using this trans-
lation matrixP, we derive the following matrix.[

δ −ω
ω δ

]
= P−1

[
w −c
w 1− c

]
P (9)

where,

P =

√
2√

4w− (1− c+ w)2

 1 0
w+c−1

2

√
4w−(1−c+w)2

2c


Here, we consider the following corrdinate transforma-

tion. [
ṽt

j

ỹt
j

]
= P−1

[
vt

j

yt
j

]
(10)

By using this coordinate transformation of Eq. (10), we can
derive the following canonical form:[

ṽt+1
j

ỹt+1
j

]
=

[
δ −ω
ω δ

] [
ṽt

j

ỹt
j

]
(11)

whereỹt
j = x̃t

j − p̃t
j .

The new coordinate (ỹ, ṽ) can be regarded as a normal-
ized coordinate. Each dimension component inṽ and ỹ is
independent, therefore The behavior of the system is gov-
erned by the eigenvalues of the canonical form of Eq. (11).
The eigenvaluesλ of the system is derived as

λ = δ + jω (12)

The system of (11) is a discrete-time system. For the
system to become stable, the eigenvalues must exist within
the unit circle on the complex plane. Therefore, the system
is said to be stable if and only if the following condition is
satisfied.

δ2 + ω2 < 1 (13)

If the parameters satisfy above condition, the eigenvalues
exist within the unit circle. The particle converges to a fixed

- 194 -



point p j . In generally, the fixed pointp j is varied with time
steps. Therefore, the trajectory exhibits a complex motion.

The damping factor∆ is derived as

∆ =
√
δ2 + ω2 (14)

Note that if the parameters satisfy the condition (13), the
damping factor∆ satisfy the following.

|∆| < 1 (15)

The rotational angleθ on each iteration is given as

θ = arctan
ω

δ
(16)

By using the damping factor and the rotation angle, Eq.
(11) can be transformed into the following.[

vt+1
j

yt+1
j

]
= ∆

[
cosθ − sinθ
sinθ cosθ

] [
vt

j

yt
j

]
(17)

The trajectory of the canonical deterministic PSO as
shown in Fig. 2 whose desired fixed point is the origin is
assumed. Comparing the case of Fig. 1(c), the trajectory
of Fig. 2(c) does not expand. We think this property gives
an effective influence for searching. In the following sec-
tion, we confirm this fact by some numerical experiments
by using some benchmark functions.

3. Simulation

In this section, we investigate the relation between the
eigenvalues and the searching ability, we carry out some
numerical simulations. We use two well-known bench-
mark problems. Each objective function consists of 10-
dimensional variables. For each simulation, the population
size of the swarm is 10.

The parameterγ controls the mixture rate between the
local best and the global best.γ = 1.0 denotes that the
system uses only the local best information, andγ = 0.0
means that it uses only the global best information. The
previous simulation results indicate the information of the
global best is important[11]. We applyγ = 0.0 for the
numerical simulation hereafter.

We confirm the relation between the rotation angle and
the convergence property. First, we observe the conver-
gence property when the rotation angleθ is varied from
0-degree to 180-degree in a period 10-degree. The simula-
tion results are shown in Fig. 3 The vertical axis denotes the
mean error from the optimal value with the searched value,
the horizontal axis denotes the rotation angleθ. Each curve
corresponds to each damping factor;∆ = 0.95, 0.90, 0.70,
0.50, 0.30. Each data is the average of the experimental
results with ten trials.

These results indicate that the characteristic of the con-
vergence properties are depended on the damping factor.
As the damping factor changes to large, the characteris-
tic of the convergence property is changed. According to
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Figure 3: Canonical Deterministic PSO: The rotation an-
gle - mean error characteristic (dimension:10, particles:10,
trials:10)

the numerical simulation, when the damping factor sets as
∆ = 0.95, the canonical deterministic PSO exhibits the
most effective performance.

The result of the deterministic PSO is shown in Fig. 4 to
compare with the result of the canonical deterministic PSO.
In the case of the deterministic PSO, the decline of the per-
formance is observed around the 180 degree in the rotation
angle comparing with the case of the canonical determin-
istic PSO. Therefore, we can say the proposed canonical
deterministic PSO exhibits better performance.

4. Conclusions

In this article, we analyzed the convergence performance
of the canonical deterministic PSO system. The canonical
deterministic PSO system does not contain the stochastic
factor. We confirm the relation between the eigenvalue and
the convergence property by using the damping factor and
the rotation angles. The results suggest these parameters
have the optimal value. On the basis of this result, we will
construct an effective stochastic PSO system.
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Figure 4: Deterministic PSO: The rotation angle - mean
error characteristic (dimension:10, particles:10, trials:10)
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