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Abstract– We propose a state-dependent bandwidth sharing 
policy, based on the threshold (TH) policy, for a single link 
that behaves as a loss system and accommodates random 
traffic originated from different service-classes. If the 
number of in-service calls of a service-class exceeds a 
threshold (dedicated to the service-class), a new arriving call 
of the same service-class is accepted in the system with a 
predefined state-dependent probability. The proposed 
model has a Product Form Solution (PFS) for the steady 
state probabilities. Thanks to the PFS, a convolution 
algorithm is proposed for the accurate calculation of call 
blocking probabilities and link utilization.  

 

I. INTRODUCTION 

Although link bandwidth capacity is increasing as 
broadband networks become economically viable, QoS 
assurance is not unnecessary. Instead, a QoS mechanism 
is essential to give access to the necessary bandwidth 
needed by the services. Considering call-level traffic in a 
single link which accommodates different service-classes 
with different QoS requirements, such a mechanism is a 
bandwidth sharing policy, since it affects call-level 
performance measures. The QoS assessment of service 
systems under a bandwidth sharing policy is 
accomplished through teletraffic models. The simplest 
bandwidth allocation policy is the Complete Sharing (CS) 
policy, where a new call is accepted in the system simply 
if the call’s bandwidth is available [1]. The CS policy 
cannot guarantee a certain QoS to a service-class, while it 
is unfair to service-classes with higher bandwidth per call 
requirements, because it leads to higher Call Blocking 
Probabilities (CBP). This motivates research on other 
policies, such as the Bandwidth Reservation (BR) policy 
(see e.g., [2]-[13]) and the Threshold (TH) policy. 

We concentrate on the TH policy, because it is broadly 
applicable in wired ([14]-[20]), wireless ([21]-[22]) and 
satellite networks ([23]-[24]) and is an attractive policy in 
contemporary access networks of a tree structure. The 
latter consists of a number of access links followed by a 
common link, like the Passive Optical Networks. Under 
the TH policy, in order for congestion to be avoided, the 
number of in-service calls of a specific service-class must 
not exceed a pre-defined threshold (dedicated to service-
class), after the acceptance of a new call of this service-
class. We propose a probabilistic TH policy (PrTH) for a 
single link that accommodates Poisson arriving calls of 
different service-classes. In this policy, call acceptance 

above a threshold is permitted with a predefined 
probability (dependent on both the service-class and 
system state), if bandwidth is available. The proposed 
loss system can be described analytically by a continuous 
time Markov chain which is reversible, resulting in a 
Product Form Solution (PFS) for the steady state 
distribution. Thanks to the existence of PFS, we 
determine accurately the CBP and the link utilization 
based on a convolution algorithm [25]. Compared to [14], 
where the ordinary TH policy is studied in a single link 
under random multirate traffic the differences are the 
following: a) the proposed PrTH policy covers the TH 
policy of [14], b) in the proposed PrTH policy, the 
calculation of the link occupancy distribution can be 
based only on a convolution algorithm. This is because 
the probabilities in the PrTH policy depend on the 
number of in-service calls in the link.      

This paper is organized as follows: In Section II, we 
present the proposed policy (PrTH), show the PFS and 
provide a convolution algorithm for the calculation of 
CBP, mean number of calls of each service-class and link 
utilization. In Section III, we present analytical CBP 
results both for the proposed model and the models of 
[26] (CS policy), [14] (ordinary TH policy), for 
evaluation. We conclude in Section IV. In the Appendix, 
we provide a tutorial example in order to show the 
necessary CBP calculations when we apply the PFS or 
the convolution algorithm. 

II. THE PROPOSED MODEL 

Consider a link of capacity C bandwidth units (b.u.) 
that accommodates Poisson arriving calls of K service-
classes under the PrTH policy. A call of service class k (k 
=1,…,K) has an arrival rate λk and requests bk b.u. If these 
bk b.u. are not available in the link then the call is blocked 
and lost without further affecting the system; otherwise: 
a) If the number nk of in-service calls of service-class k in 
the steady state plus the new arriving call, does not 
exceed a predefined threshold *

kn , i.e., nk + 1  *
kn , then 

the call is accepted in the link. 
b) If nk + 1 > *

kn , the call is accepted in the system with 

probability ( )k kp n or blocked with probability 1- ( )k kp n . 

The set of probabilities ( )k kp n constitutes the vector:  

*( (0), (1)..., ( ),..., ( / 1), ( / ))k k k k k k k kp p p n p C b p C b       kp    (1) 



where / kC b    is the maximum number of service-class 

k calls that the system can service. 
In (1), we assume that: 

a) *(0) (1) ... ( 1) 1k k k kp p p n    , i.e., a service-class k 

call is always accepted if the threshold *
kn is not 

exceeded, 

2) the probabilities *( ),..., ( / 1)k k k kp n p C b     may be 

different. In the ordinary TH policy [14], these 
probabilities are zero.  In the PrTH policy, they can be set 
either all positive, or zero after a certain number greater 
than *

kn , and 

3) ( / ) 0k kp C b     obviously, due to lack of available 

link bandwidth. 
An accepted call remains in the system for a generally 

distributed service time with mean 1
k
 .  The total offered 

traffic-load of service-class k calls is 1
k k ka   (in erl).   

Let the steady state vectors 1 1 1( ,..., , , ,..., )k k k Kn n n n n n  and 

1 1 1( ,..., , 1, ,..., )k k k Kn n n n n  -
kn , 1 1 1( ,..., , 1, ,..., )k k k Kn n n n n  +

kn . 
The Global Balance (GB) equation for state n of the 
proposed multirate loss model, expressed as (rate into 
state n) = (rate out of state n), is expressed as: 
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Ω is the state space of the system denoted by Ω={n: 

0 nbC, k=1,…,K}, nb =


K

k

kkbn
1

, 1( ,..., )Kb bb  

and ( ), ( ), ( )k kP P P n n n are the probability distributions 

of states , ,k k
 n n n , respectively. 

Since the corresponding Markov chain is reversible, 

Local Balance (LB) exists and the following LB 

equations are extracted as (rate up = rate down), for k 

=1,…,K and n  : 

( ) ( 1) ( ) ( ) ( )k k k k k k k kp n P n P      n n n n                    (3) 

( ) ( ) ( ) ( 1) ( ) ( )k k k k k k k kp n P n P      n n n n                 (4) 

The system of LB equations (3) and (4) is satisfied by 
the following PFS: 
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where G is the normalization constant determined by: 
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To calculate the CBP Bk of service-class k,  we define the 
state space Ωk ={n:0 nbC-bk, k=1,…,K} which 
denotes the set of states for which a new service-class k 
call will be definitely accepted in the system or accepted 
with a state-dependent probability. Thus: 

1 k
k

G
B

G
                                                                      (6) 

where ( ) ( )
k

k k kG p n P


 
n Ω

n . 

The computational complexity of (6) is in the order of 
O(CK) for the CS policy. To reduce it in the order of 
O(KC2), we exploit the PFS and the principle of 
independency among service-classes (i.e., multiplication 
of individual state probabilities), and present the 
following 3-step convolution algorithm for the 
calculation of CBP and link utilization, by modifying the 
convolution algorithm of [25]:  

Let  j be the occupied link bandwidth, j = 0, 1,…,C.  
Step 1) Determine the occupancy distribution qk(j) of 
each service-class k (k=1,…,K), assuming that only 
service-class k exists in the link: 
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Step 2) Determine the aggregated occupancy distribution 

( )kQ based on the successive convolution of all service-

classes apart from service-class k: 

( ) 1 2 1 1... ...k k k KQ q q q q q                (8) 

Note that the term “successive” means that initially q1 
and q2 are convolved to give q12, then q12 with q3 are 
convolved to give q123, and so on. The convolution 
operation between two service-classes k and r is 
determined as: 

1

0 0

(0) (0), ( ) (1 ),..., ( ) ( )
C

k r k r k r k r
x x

q q q q q x q x q x q C x
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Step 3) To calculate the CBP of service-class k, 
determine the convolution of ( )kQ  (step 2) with qk as 

follows: 

1
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Normalizing the values of (10), we obtain the occupancy 
distribution q(j), j=0,1,…,C via  the formulas: 
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Having determined q(j)'s, we propose the following 
formula for the calculation of CBP of service-class k: 

*
( )

1

( ) (1 ( )) ( ) ( )
k k

k k k

C b C bC

k k k k k
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The first term of the right hand side of (12) refers to 
states j where there is no bandwidth available for service-
class k calls. The second term refers to the case that there 
is available link bandwidth but nevertheless call blocking 
occurs; this happens in states * ,...,k k kx n b C b   (with 

probability 1-pk(x)), when *
k kn n . 

The link utilization U (in b.u.) is given by the formula: 

1

( )
C

j

U jq j


                                                            (13) 

where the values of q(j) are given by (11). 
 

III.  EVALUATION 

In this section we present analytical results for an 
application example. Simulation results are not presented 
since the analytical results of the proposed model are 
accurate (due to the existence of PFS). 

We consider a link of capacity C = 60 b.u., that 
accommodates calls of K = 2 service-classes, with the 
traffic characteristics shown in Table I: 

  
Table I: Traffic parameters of both service-classes. 

 Service-

class 

  Traffic-

load (erl) 

 Bandwidth per 

call (b.u.) 

 Threshold 

1st a1 = 5.0 b1 = 2 b.u. 
*
1n  = 20 

2nd a2 = 2.0 b2 = 7 b.u. 
*
2n  = 5 

 
We provide analytical results of CBP for the proposed 

model considering two scenarios: (a) Calls of the 1st 
service-class behave as in the TH policy of [14], i.e., 

1 1 1(20) (21) ... (30) 0p p p    , while calls of the 2nd 
service-class are accepted in the system with 
probability 2 2 2(5) (6) (7) 0.5p p p   , and 2 (8) 0p  , 
(b) Calls of the 1st service-class are accepted with 
probability 1 1 1(20) (21) ... (29) 0.3p p p    , and 

1(30) 0p  , while calls of the 2nd service-class are 

accepted with probability 2 2 2(5) (6) (7) 0.2p p p   , 

and 2 (8) 0p  . The results are compared with the CBP 
results under the CS and TH policy of [26] and [14], 
respectively (Figs. 1, 2). In the x-axis of Figs 1-2, the 
offered traffic-load of the 1st and 2nd service-class 
increases in steps of 0.5, 0.25 erl, respectively. So, point 
1 refers to: (a1, a2) = (5.0, 2.0) while point 9 to: (α1, α2) = 
(9.0, 4.0).  

Based on Figs. 1-2 we observe that: a) The PrTH 
policy clearly affects the blocking probabilities of both 
service-classes. Thus, it gives the opportunity for a fine 

call congestion control aiming at guaranteeing certain 
QoS to each service-class, in intermediate QoS levels 
between the CS policy and the pure TH policy. (b) The 
existing models fail to approximate the results obtained 
from the proposed model; this fact reveals the necessity 
of the new model. 
  

V.  CONCLUSION 

 We propose a teletraffic multirate loss model for a 
single link that accommodates random traffic under a 
state-dependent threshold-based bandwidth sharing 
policy. The link is analysed as a multirate loss system, 
via a reversible continuous-time Markov chain, which 
leads to a PFS for the steady state distribution. Based on 
the PFS, various performance measures can be accurately 
determined via a convolution algorithm. Comparison 
against other models under the CS or the TH policy, 
reveals the necessity of the new model.   

   

 
Fig. 1. CBP – 1st service-class. 

 

 
Fig. 2. CBP – 2nd service-class. 



APPENDIX. TUTORIAL EXAMPLE 

Consider a link of fixed capacity of C=4 b.u. that 
accommodates calls of K = 4 service-classes under the 
PrTH policy. An arriving call of service class k (k 
=1,…,4) follows a Poisson process with arrival rate k  
and requests bk b.u. We assume that b = (b1, b2, b3, b4) 
=(1, 2, 1, 2). Also, let: 1 2 3 4 1.0 erla a a a    .  

Let * * * *
1 2 3 42, 1, 3, 1n n n n    be the corresponding 

threshold values for each service-class. The 
corresponding probability vectors are the following:  

   
   
   
   

1 1 1 1 1 1

2 2 2 2

3 3 3 3 3 3

4 4 4 4

(0), (1), (2), (3), (4) 1,1,0.4,0.4,0

(0), (1), (2) 1,0.4,0

(0), (1), (2), (3), (4) 1,1,1,0.95,0

(0), (1), (2) 1,0.95,0

p p p p p

p p p

p p p p p

p p p

 

 

 

 

p

p

p

p

 

The state space Ω of this small system consists of 30 
states of the form n = (n1, n2, n3, n4) which are presented 
in the Table A.1, together with the corresponding values 
of the occupied bandwidth j = nb and the blocking states 
(columns 6-9) of each service-class. The symbol # refers 
to call blocking with a probability p due to the PrTH 
policy. The symbol * refers to call blocking due to lack of 
available link bandwidth. 

 
Table A.1: State space (n1, n2, n3, n4), occupied bandwidth j and 

blocking states (B1, B2, B3, B4). 
n1 n2 n3 n4 j B1 B2 B3 B4 
0 0 0 0 0     
0 0 0 1 2    # 
0 0 0 2 4 * * * * 
0 0 1 0 1     
0 0 1 1 3  *  * 
0 0 2 0 2     
0 0 2 1 4 * * * * 
0 0 3 0 3  * # * 
0 0 4 0 4 * * * * 
0 1 0 0 2  #   
0 1 0 1 4 * * * * 
0 1 1 0 3  *  * 
0 1 2 0 4 * * * * 
0 2 0 0 4 * * * * 
1 0 0 0 1     
1 0 0 1 3  *  * 
1 0 1 0 2     
1 0 1 1 4 * * * * 
1 0 2 0 3  *  * 
1 0 3 0 4 * * * * 
1 1 0 0 3  *  * 
1 1 1 0 4 * * * * 
2 0 0 0 2 #    
2 0 0 1 4 * * * * 
2 0 1 0 3 # *  * 
2 0 2 0 4 * * * * 
2 1 0 0 4 * * * * 
3 0 0 0 3 # *  * 
3 0 1 0 4 * * * * 
4 0 0 0 4 * * * * 

 
In what follows we show the necessary CBP calculations 
when we consider: a) the PFS and b) the convolution 
algorithm. 

Case a: CBP calculations based on the PFS 
We initially define the state spaces: 
Ω1={n:0nbC-b1}={n:0nb3}={(0,0,0,0), 
(0,0,0,1), (0,0,1,0), (0,0,1,1), (0,0,2,0), (0,0,3,0), 
(0,1,0,0), (0,1,1,0), (1,0,0,0), (1,0,0,1), (1,0,1,0), 
(1,0,2,0), (1,1,0,0), (2,0,0,0), (2,0,1,0), (3,0,0,0)} 

Ω2={n:0nbC-b2}={n:0nb2}={(0,0,0,0), 
(0,0,0,1), (0,0,1,0), (0,0,2,0), (0,1,0,0),  (1,0,0,0), 
(1,0,1,0), (2,0,0,0)} 

Ω3={n:0nbC-b3}={n:0nb3}={(0,0,0,0), 
(0,0,0,1), (0,0,1,0), (0,0,1,1), (0,0,2,0), (0,0,3,0), 
(0,1,0,0), (0,1,1,0), (1,0,0,0), (1,0,0,1), (1,0,1,0), 
(1,0,2,0), (1,1,0,0), (2,0,0,0), (2,0,1,0), (3,0,0,0)} 

Ω4={n:0nbC-b4}={n:0nb2}={(0,0,0,0), 
(0,0,0,1), (0,0,1,0), (0,0,2,0), (0,1,0,0),  (1,0,0,0), 
(1,0,1,0), (2,0,0,0)} 
 
Then, based on the formulas, for k=1, …, 4: 
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we have, for 1 2 3 4 1.0 erla a a a    : 

B1 = 0.37122, B2 = 0.65289, B3 = 0.33696 and B4 = 
0.62306. 
Note that the previous method is quite complex 
especially for systems of large capacity with many 
service-classes, since it requires enumeration and 
processing of the whole state space Ω. 
 
Case b: CBP calculations based on the convolution 
algorithm 
Step 1:  
 Determination of q1(j),  j = 1, ..., C 
Since only the relative values of q1(j)’s are important, we 
may choose q1(0) = 1 and calculate the remaining q1(j)’s 
relative to q1(0): 

1
1 1

1 1

2
1 1

1 1

3
1 1 1

1 1

4
1 1 1 1

1

1

(0)
1 (1) (1) 1

1!

(0)
2 (2) (2) 0.5

2!

(0) (2)
3 (3) (3) 0.4 / 6

3!

(0) (2) (3)
4 (4)

4!
(4) 0.16 / 24

q a
j q q

q a
j q q

q p a
j q q

q p p a
j q

q


    


    

 
    

  
   



 

If necessary, we can avoid numerical problems (that may 
arise in large examples) by normalizing the values of 



q1(j)’s with 
1/

1
0

( )
C b

j

q j
  


 .  For this particular example we 

have 
1/

1
0

( ) 2.573333
C b

j

q j
  



 and the normalized values of 

q1(j)’s are: 
 

1 1 1

1 1

(0) (1) 0.388601, (2) 0.1943005,

(3) 0.02590673, (4) 0.002590673

q q q

q q

  
 

 

 

 Determination of q2(j), q3(j) and q4(j) 
Similarly, the normalized values of q2(j)’s, q3(j)’s and 
q4(j)’s are the following: 
 

2 2 2(0) (2) 0.4545454, (4) 0.090909q q q    

3 3 3

3 3

(0) (1) 0.369515, (2) 0.1847575,

(3) 0.0615858, (4) 0.0146266

q q q

q q

  
 

4 4 4(0) (2) 0.4040404, (4) 0.1919192q q q    
 
Step 2:  
Determine all Q(-k) for k = 1, …, 4. Herein, we present 
only the calculations of Q(-4). In a similar way we can 
obtain Q(-1), Q(-2) and Q(-3).  
 
 We start by convolving q1(j)’s and q2(j)’s in order to 
obtain q12(j)’s. 
 

12 1 2
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12 1 2
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0

3

12 1 2
0

4

12 1 2
0

0 (0) (0) * (0) 0.176636797

1 (1) ( ) * (1 ) 0.176636797
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 , the normalized values of 

q12(j)’s are: 
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 We continue by convolving q12(j)’s and q3(j)’s in 
order to obtain q123(j) = Q(-4)(j). 
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Since 123
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 , the normalized values of 

q123(j)’s i.e., Q(-4)(j)’s are: 
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Step 3:  
Determine q(j)’s and consequently the CBP of all 
service-classes. Herein, we determine q(j)’s and B4 based 
on the normalized values of Q(-4)(j)’s calculated in step 2. 
 We start by convolving q123(j)’s and q4(j)’s in order to 
obtain q(j)’s. 
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 , the normalized values of 
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Note that these values will also be obtained if we follow 
any another combination of qxyz(j)’s and qw(j)’s, e.g., 
q234(j)’s and q1(j)’s. 

 Calculation of e.g., B4 based on q(j)’s and Q(-4)(j)’s. 
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which is exactly the same value with that obtained by 
using the PFS. 
In a similar way we can calculate: B1 = 0.37122, B2 = 
0.65289, B3 = 0.33696.   
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