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Abstract–We propose a teletraffic loss model of a link that 
accommodates different service-classes whose calls have 
different bandwidth requirements and come from finite 
sources. This arrival process is known as quasi-random. 
New calls compete for the available link bandwidth under 
the Multiple Fractional Channel Reservation (MFCR) 
policy. The MFCR policy allows the reservation of real (not 
integer) number of channels in order to benefit calls of high 
channel (bandwidth) requirements.  The proposed model 
does not have a product form solution for the steady state 
probabilities. However, we propose approximate but 
recursive formulas for the calculation of time and call 
congestion probabilities as well as link utilization. The 
accuracy of the proposed formulas is verified through 
simulation and found to be highly satisfactory. 

I. INTRODUCTION 

Contemporary communication networks require QoS 
mechanisms in order to provide the necessary bandwidth 
needed by multirate service-classes. In the case of 
multirate call-level traffic in a single link, modeled as a 
loss system, which accommodates service-classes with 
different QoS requirements, such a QoS mechanism is a 
bandwidth sharing policy. The QoS assessment of service 
systems under a bandwidth sharing policy is 
accomplished through multirate teletraffic loss/queueing 
models [1]. 

The simplest bandwidth sharing policy is the Complete 
Sharing (CS) policy, where a new call is accepted in the 
system if the call’s bandwidth is available. Otherwise, the 
call is blocked and lost without further affecting the 
system. The main teletraffic multirate loss model that 
adopts the CS policy is the classical Erlang Multirate 
Loss Model (EMLM) [2]-[3]. In the EMLM, the call 
arrival process is Poisson while calls have fixed 
bandwidth requirements and generally distributed service 
times. The fact that the link occupancy distribution and 
Call Blocking Probabilities (CBP) are calculated via the 
accurate and recursive Kaufman-Roberts formula ([2]-
[3]) has led to numerous extensions of the EMLM 
proposed for the call-level analysis of wired (e.g., [4]-
[17]), wireless (e.g., [18]-[29]), satellite (e.g., [30]-[31]) 
and optical networks (e.g., [32]-[34]).   

The main drawback of the CS policy is that it cannot 
provide a certain QoS to calls of a service-class. In 
addition, it is unfair to service-classes of high bandwidth-
per-call requirements since it results in higher CBP 
compared to CBP of service-classes with low bandwidth-
per-call requirements. A policy whereby QoS can be 

guaranteed to new calls is the Bandwidth Reservation 
(BR) policy [1]. In the BR policy, an integer number of 
bandwidth units (b.u.) or channels is reserved to benefit 
calls of high bandwidth requirements. The BR policy can 
achieve CBP equalization among service-classes at the 
cost of substantially increasing the CBP of calls with 
lower bandwidth requirements (e.g., [6]-[8], [35]-[39]).  

In this paper, we consider an extension of the BR 
policy, namely the Multiple Fractional Channel 
Reservation (MFCR) policy [19]. The MFCR policy 
extends the BR policy by allowing the reservation of real 
(not integer) number of channels (or b.u.). More 
precisely, in the MFCR policy, real number of channels, 
tr,k, are reserved to benefit calls from all service-classes 
apart from service-class k calls. The reservation of real 
number of channels is achieved since , 1r kt     channels 

are reserved with probability , ,r k r kt t    while ,r kt    

channels are reserved with probability  , ,1 r k r kt t     , 

where ,r kt    is the largest integer not exceeding ,r kt . In 

[19], the case of Poisson (random) traffic is considered. 
We name this model Random MFCR (R-MFCR). In the 
R-MFCR, there is no Product Form Solution (PFS) for 
the steady state distribution, due to the fact that local 
balance between adjacent states is destroyed. This leads 
to an approximate but recursive formula for the 
determination of the link occupancy distribution and 
consequently the CBP calculation [19].  

We extend the R-MFCR model by assuming that calls 
of each service-class k come from finite sources. This 
arrival process is known in the literature as quasi-random 
and is smoother than the Poisson process [40], [41]. To 
this end, we propose the Quasi-Random MFCR model 
(QR-MFCR), which describes a multirate loss system of 
K different service-classes whose calls have fixed 
bandwidth requirements and an exponentially distributed 
service time. The proposed model does not have a 
product form solution due to the existence of the MFCR 
policy. However, we prove approximate but recursive 
formulas for the calculation of Time Congestion (TC) 
and Call Congestion (CC) probabilities as well as link 
utilization. The accuracy of the proposed formulas is 
verified through simulation and found to be highly 
satisfactory. Note that TC probabilities are determined by 
the proportion of time the system is congested and can be 
measured by an outside observer. CC probabilities refer 
to the probability that a new call is blocked and lost. TC 



and CC probabilities coincide when calls of all service-
classes follow a Poisson process (PASTA property [40]). 
In that case we use the term CBP, instead of TC or CC 
probabilities.    

This paper is organized as follows: In Section II, we 
review the R-MFCR model of [19]. In Section III, we 
propose the QR-MFCR model and provide approximate 
but recursive formulas for the calculation of the link 
occupancy distribution and consequently TC and CC 
probabilities as well as link utilization. In Section IV, we 
present analytical and simulation TC probabilities results 
for the proposed model (QR-MFCR) and analytical TC 
probabilities for the models of [2], [3] and [19]. We 
conclude in Section V.  

  

II. THE R-MFCR MODEL  

Consider a single link of capacity C channels (or b.u.) 
that accommodates calls of K service-classes under the 
MFCR policy. A call of service class k (k =1,…,K) 
follows a Poisson process with arrival rate λk, requests bk 
channels and has an MFCR parameter tr,k that expresses 
the real number of channels reserved to benefit calls of all 
other service-classes except from service-class k. The 
reservation of tr,k channels is achieved because , 1r kt     

channels are reserved with probability , ,r k r kt t    while 

,r kt    channels are reserved with 

probability  , ,1 r k r kt t     . As an example, calls of 

service-class k may have an MFCR parameter of tr,k = 2.4 
channels. The reservation of 2.4 channels is achieved by 
assuming that 2.4 1 3     channels are reserved with 

probability 2.4 2.4 0.4    while 2.4 2    channels 

are reserved with probability  1 2.4 2.4 0.6     . 

Let j be the occupied link bandwidth (j = 0, 1…,C) 
when a new service-class k call arrives in the link. Then, 
we consider the following admission control cases: a) if 
the available link bandwidth (C – j) minus the MFCR 
parameter ,r kt   is higher than the required bk channels 

i.e., if ,r k kC j t b     , then the new call is accepted in 

the system, b) if ,r k kC j t b     , then the new call is 

accepted in the system with probability  , ,1 r k r kt t      

and c) if ,r k kC j t b     , then there is no available 

bandwidth and the new call is blocked and lost without 
further affecting the system. An accepted call remains in 
the system for an exponentially distributed service time 
with mean 1

k
 . 

The determination of the link occupancy distribution, 
G(j), in the MFCR is based on the following approximate 
but recursive formula [19]:  

1
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1
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and 1
k k ka   is the total offered traffic-load of service-

class k calls (in erl). 
Having determined G(j)’s we calculate the CBP of 

service-class k calls, Bk, by the formula [19]:  
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, , ,

1

1

( )
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C
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where: 
0

( )
C

j

G G j


   is the normalization constant. 

In addition, we can determine the link utilization, U, 
via (4), or the average number of service-class k calls in 
state j, yk(j), via (5): 
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Note that (5) is the basis for the proof of (1) and implies 
that the average number of calls in state j, yk(j), is 
negligible in the part of the reservation space of service-
class k denoted by the states: , 1,...,r kj = C - t C    .  

In the case of the classical BR policy, where an integer 
number of channels, tk, is reserved, the link occupancy 
distribution is determined by (1), the link utilization by 
(4) while (2), (3) and (5) take the form of (6), (7) and (8), 
respectively [35]: 
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k k
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k
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                                      (6) 
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In the case of the CS policy (all BR parameters are set 
to zero), the link occupancy distribution is determined by 
the classical Kaufman-Roberts recursion (9), CBP by 
(10) and the values of yk(j) by (11), [2]-[3]:  
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III. THE PROPOSED QR-MFCR MODEL 

Consider a link of capacity C  channels that 
accommodates K different service-classes. Calls of 
service class k (k =1,…,K) come from a finite source 
population Nk and compete for the available channels 
under the MFCR policy. The mean arrival rate of service-
class k idle sources is λk = (Nk - nk)vk where nk is the 
number of in-service calls and vk is the arrival rate per 
idle source. The offered traffic-load per idle source of 
service-class k is given by , /k f k ka v  (in erl). This 

arrival process is known as a quasi-random process [40], 
[41]. If kN  for k = 1,…,K, and the total offered 
traffic-load remains constant, then the arrival process 
becomes Poisson. 

Figure 1 shows the steady state transition rates of the 
QR-MFCR model. Based on Fig. 1, the global balance 
equation for state n=(n1,n2,…,nk,…,nK), expressed as rate 
into state n = rate out of state n, is given by: 

1 1

1 1
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where: 
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1 1 1( ,..., , 1, ,..., )k k k k Kn n n n n
  n , 

1 1 1( ,..., , 1, ,..., )k k k k Kn n n n n
  n  

and ( ), ( ), ( )k kP P P n n n are the probability distributions 

of the corresponding states , ,k k
 n n n , respectively.   

The proposed model does not have a PFS for the 
determination of the steady state probabilities ( )P n due to 
the fact that local balance can be destroyed between 
states ,k

n n or , k
n n . This means that ( )P n ’s (and 

consequently all performance measures) can be 
determined by solving the global balance equations, a 
realistic task only for small (i.e., tutorial) examples of 
links with small capacity and two or three service-classes. 

                Figure 1. State transition diagram of the proposed QR/MFCR. 

 
To circumvent this problem, we prove an approximate 

but recursive formula for the calculation of the link 
occupancy distribution, Gf (j), of the proposed finite 
source model. By definition: 

( ) ( )fG j P


 
jn Ω

n                                                  (14) 

where jΩ is the set of states whereby exactly j b.u. are 

occupied by all in-service calls, i.e. 
 :j j  Ω n Ω nb  and Ω={n: 0 nbC, k =1,…,K}. 

Since j=nb =
1

K

k k
k
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
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in (14), we assume (this is 

an approximation) that local balance exists between the 
adjacent states ,k

n n and has the form:  
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where: , ( ) ( ) /k f k k k ka v  n n  . 

Summing both sides of (16) over jΩ we have:  
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The left hand side of (17) can be written as: 
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The second term of the right hand side of (18) is written 
as: 
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where , ( )k f ky j b is the average number of service-class 

k calls in state kj b . 

Based on (19)-(21), (18) takes the form: 
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Equation (17) due to (22) is written as: 
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Equation (15) due to (23) is written as: 
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In (24), the values of , ( )k f ky j b are not known. To 

determine them, we use a lemma of [5]. According to that 
lemma, two stochastic systems are equivalent and result 
in the same CBP, if they have: a) the same traffic 
description parameters ,( , , )k k fK N a where k=1,…,K  and 

b) exactly the same set of states. 
Our purpose is therefore to find a new stochastic system, 
whereby we can calculate , ( )k f ky j b . The bandwidth 

(channel) requirements of calls and the capacity in the 
new stochastic system are chosen according to the 
following two criteria: 1) conditions (a) and (b) are valid 
and 2) each state has a unique occupancy j. 

Now, state j is reached only via the previous state kj b . 

Thus, , ( ) 1k f k ky j b n   . 

Based on the above, (24) is given by: 

,
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where ( )k, f ka j - b is given by (20).  

The calculation of ( )fG j ’s via (25) requires the value 

of nk which is unknown. The determination of nk’s 
requires the state space determination of the equivalent 
system, a complex procedure especially for large capacity 
systems that accommodate many service-classes. Because 
of this we approximate nk in state j, nk(j), as yk(j), when 

Poisson arrivals are considered, i.e., ( ) ( )k kn j y j . Thus, 

we determine ( )fG j ’s via the formula: 
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where the values of yk(j)’s are given by (5). 

Having determined ( )fG j ’s we calculate the TC 

probabilities of service-class k calls, 
kbP , as follows:  
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where: 
0

( )
C

f
j

G G j


   is the normalization constant. 

CC probabilities of service-class k, Bk, can be determined 
via (27) where ( )fG j ’s are calculated (via (26)) for a 

system with Nk - 1 traffic sources. As far as link 
utilization, U, is concerned, it can be calculated via (4). 
 

IV.  NUMERICAL EXAMPLES - EVALUATION 

In this section, we present an application example and 
provide analytical and simulation TC probabilities results 
of the proposed QR-MFCR model and analytical TC 
probabilities results of the R-MFCR model of [19]. As a 
reference we also present analytical results in the case of 
Poisson arrivals and the CS policy [2]-[3] or the BR 
policy [35]. Simulation results are derived via the 
Simscript III simulation language [42] and are mean 
values of 7 runs. As far as the reliability ranges are 
concerned they are less than two order of magnitude, and 
therefore are not presented in the following figures. All 
simulation runs are based on the generation of four 
million calls per run. To account for a warm-up period, 
the first 5% of these generated calls are not considered in 
the CBP results.   

As an application example, consider a link of capacity 
C = 60 channels, that accommodates calls of three 
service-classes, with the traffic characteristics of Table 1. 

Table 1: Service-classes – Traffic characteristics 

 Service-

class 

 Traffic-load 

for Poisson 

traffic (erl) 

  Bandwidth 

(channels) 

MFCR parameter 

(channels) 

1st a1 = 1.0 b1 = 1     tr,1 = 9.4 

2nd a2 = 1.0 b2 = 5 tr,2 = 5.3

3rd a3 = 1.0  b3 = 10  tr,3 = 0

 
In the case of quasi-random traffic, we consider two 

sets of traffic sources: 1) N1=N2=N3 = 10 sources and 2) 
N1=N2=N3 = 30 sources. In both sets, the values of 

k, fa are determined by /k, f k ka a N  for k=1, 2, 3. 

Concerning the MFCR parameter of the 1st service-
class, the reservation of 9.4 channels is achieved by 
assuming that 10 channels are reserved with probability 



0.4 while 9 channels are reserved with probability 0.6 . 
Similarly, 5.3 channels for the 2nd service-class are 
reserved by assuming that 6 channels are reserved with 
probability 0.3 while 5 channels are reserved with 
probability 0.7 . 

In the x-axis of Figs 2-4 the offered traffic load of the 
1st, 2nd and 3rd service-class increases in steps of 0.5, 0.2 
and 0.1 erl, respectively. So, point 1 is: (a1, a2, a3) = (1.0, 
1.0, 1.0) while point 8 is: (α1, α2, α3) = (4.5, 2.4, 1.7).  

In Figs. 2-4, we present analytical TC probabilities 
results of the QR-MFCR, the R-MFCR and the models of 
[2]-[3], [35] together with the QR-MFCR simulation 
results, for each service-class, respectively. All figures 
show that the analytical results of the QR-MFCR model: 
a) are close to the corresponding simulation results, a fact 
that validates the proposed formulas, b) are lower than 
those of the R-MFCR model, especially for N1=N2=N3 = 
10 sources, due to the finite number of traffic sources. In 
addition, Figs. 2-4, show that TC probabilities of the 3rd 
service-class are reduced due to the MFCR policy at the 
cost of substantially increasing the TC probabilities of the 
other two service-classes.    
   

V.  CONCLUSION 

In this paper we propose a multirate loss model of 
quasi-random arriving calls which compete for the 
available link bandwidth under the MFCR policy. The 
analysis of the proposed model leads to approximate but 
recursive formulas for the calculation of the link 
occupancy distribution and consequently TC and CC 
probabilities as well as link utilization. Simulation results 
verify the accuracy of the proposed model.       

 

 
Figure 2. TC probabilities – 1st service-class. 

 
Figure 3. TC probabilities – 2nd service-class. 

 

 
Figure 4. TC probabilities – 3rd service-class. 
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