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Evolution Into 5G
 Taking 35 years (1980~2015), mobile wireless networks have evolved

from 1G of few kbps (voice) to 4G of a few giga bps (data)
 4G/LTE-A started in March 2015 in Japan
 4G/LTE-A is designed to achieve a spectrum efficiency per BS of 30bps/Hz/BS

 Mobile wireless networks have become an important infrastructure of our
modern society
 Almost every one is connected to Internet via 3G/4G and WiFi networks

 5G network is not just a broadband network
 New services related to IoT and ITS/machine control are 

expected
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Explosive Growth of Mobile 
Data Traffic (1,000 times in 10 years)
 Due to rapid popularity of smart phones, mobile data traffic 

is growing at a rate of close-to-2 times per year
 This growth rate leads to

about 1,000 times of 
2010 traffic volume
by 2020

 Present 4G networks
cannot cope with this
rapid growth

 Traffic gathers in 
hotspots and local 
areas
 70% in offices and 

hotspots, over 90%
in future

QoS cannot be guaranteed
in hotspots!
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New Services in 5G
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Internet

Traditional communications services

Very high 
mobility user

High mobility user

Stationary user
Low mobility user

IoT related 
massive devices 

connection: 
M2M, D2D

ITS and machine 
control 

applications: ultra 
low latency and 
high reliability

 Broadband mobile data services will become more and 
more popular 

 New services will come out in the near future
 IoT related massive devices connection
 ITS and machine control applications



5G Requirements
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“5G Vision – The 5G Infrastructure Public Private 
Partnership (5G-PPP): the next generation of 
communication networks and services,” available 
at www.5g-ppp.eu, Feb. 2015.

100 Mb/s

1 K/km290 days

99.99%

25 ms

10 Gb/s/km2

4G

5G

Energy efficiency
10% of current consumption

Service deployment time
90 minutes

Number of devices
1 M/km2

Reliability
99.999%

End-to-end latency
5 ms

Mobile data volume
10 Tb/s/km2

Mobility
500 km/h

Peak data rate
10 Gb/s



Cell-densification
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BS

 Transmission capability of BS (bps/BS) is limited
 The spatial distribution of users/devices should 

be more exploited
 This is within the context of cellular concept 
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5G Technical Issues Toward 
Mobile Broadband Services
 How to achieve a peak data rate C of 10Gbps/BS and a bit 

rate density  of 10 Tbps/km2 in a strong CCI environment?
 BS capacity C (bps/BS) and capacity density  (bps/km2) w/ MIMO 

using Nt transmit and Nr receive antennas

 Promising approaches
 Reducing F1: dynamic reuse of the same freq. (scheduling)
 Increasing B: >>100MHz
 Increasing Nr: Nr>>1 (massive MIMO)
 Reducing A: cell densification (small-cell networks)
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5G Technical Issues Toward 
Mobile Broadband Services
 One design example

 Small-cell structured network by cell densification
Because of near single-user access/BS, a user is able to 
occupy the whole bandwidth if F1 and accordingly, to 
increase the user data rate significantly

Higher frequency bands, where abundant bandwidths 
remain unused, can be used, e.g., centimeter wave, 
millimeter wave, and even visible light bands, can be used
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 Distributed antenna approach
 A large number of antennas are deployed in a macro-cell 

area instead of using massive MIMO at macro-cell BS
 A group of distributed antennas nearby a user forms a virtual 

small-cell
 Small-cell base station (SBS) approach

 A number of loosely coordinating small-cell BSs (SBSs) are 
deployed in a macro-cell area

 Decentralized radio resource management

Two Approaches for Small-cell 
Network
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 Fast resource 
management (frequency 
and time) for users 
within each SBS

Slow (distributed) 
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(frequency)  for SBSs 
within a macro-cell

SBS approach

MBS

Pool of 
baseband

TRx’s
TRx

controller

Antenna becomes one 
dimension in resource 
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Handover is replaced 
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virtual macro-cell

Distributed 
antenna approach



User-centric Virtual Small-cell
Centralized vs Distributed
 It may be wise to exploit 

more the spatial domain
 A large number of antennas are 

deployed in a macro-cell area 
 Each distributed antenna is 

connected to macro-cell BS (MBS) 
by optical link

 A group of distributed 
antennas nearby a user forms 
a user centric virtual small-
cell within a macro-cell area
 Handover problem can 

be replaced with antenna 
selection problem

 Path loss and shadowing loss 
problems can be mitigated

 Near single-user access is possible
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User-centric Virtual Small-cell
Centralized vs Distributed
 Two types of virtual small-cell
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Macro-cell BS is 
the center of cell

ㇾ Path loss
Shadowing loss

ㇾ Fading
ㇾ Near single-user access 

in each narrow beam

ㇾ Path loss
ㇾ Shadowing loss
ㇾ Fading
ㇾ Near single-user access 

in each small-cell

Centralized massive MIMO Distributed massive MIMO

User-centric 
virtual small-
cell



User-centric Virtual Small-cell
Centralized vs Distributed
 The same received signal representation
 The channel matrix H is different 

 Centralized massive MIMO: dense H
 Distributed massive MIMO: sparse H
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F. Adachi, “Wireless Optical
Convergence Enables Spectrum-Energy
Efficient Wireless Networks,” Proc.
2014 International Topical Meeting on
Microwave Photonics/the 9th Asia
Pacific Microwave Photonics
(MWP/APMP 2014), pp.51-56, Sapporo,
Japan, 20-23 Oct. 2014.
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 Uplink access

 Downlink access

User-centric Virtual Small-cell
Centralized vs Distributed
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Severely Frequency-
selective Channel
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 Transmitted radio waves are reflected or diffracted by some
large buildings, creating resolvable paths having time delays
of multiple of (signal bandwidth)-1

 Each resolvable path is the sum of irresolvable paths
created by local scatterers surrounding a mobile

 The path gain hl(t) varies in time according to the 
movement of mobile terminal since resolvable paths are 
added constructively at one time and destructively at 
another time

Local
scatterers

Large obstacles

Transmitter

Receiver
Reflection/
diffraction

d-4
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Severely Frequency-
selective Channel
 The transfer function 

H(f, t) of broadband 
channel at time t is not 
constant and varies over 
the signal bandwidth

 In such a severely 
frequency-selective 
channel, advanced 
equalization technique is 
necessary
 OFDMA with frequency-

domain equalization (FDE)
 Single-carrier access with FDE
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Frequency-domain 
Equalization (FDE)
SC is a family of OFDM

 SC transceivers can be designed based on OFDM
 FFT at transmitter acts as the precoder of OFDM
 There may be different precoders which generate many 

different waveforms between OFDM and SC
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Equalization for Single-Carrier Broadband
Wireless Systems,” IEEE Communications
Magazine, Vol. 40, No. 4, pp. 58-66, April 2002.

*F. Adachi, D. Garg, S. Takaoka, and K. Takeda,
“Broadband CDMA techniques,” IEEE Wireless
Commun. Mag., Vol. 12, No. 2, pp. 8-18, April
2005.



TDD Allows Transmit 
Equalization
 TDD can exploit the channel reciprocity to introduce the 

transmit equalization without the feedback of channel state 
information (CSI) from user equipments (UEs)

 Computationally demanding signal processing can be done 
at a virtual MBS, thereby alleviating the complexity 
problem of UEs
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 A group of distributed antennas
nearby a user terminal forms a
user-centric virtual small-cell

 Space-time block coded
(STBC) diversity
and multiuser
spatial multi-
plexing are used
to improve
the throughput
in the virtual 
small-cell 

Distributed Antenna
Cooperative Signal Transmission
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STBC Diversity
OFDM Downlink
 STBC diversity with MMSE transmit FDE

 It allows an arbitrary number of transmit antennas although the 
number of receive antennas at a user equipment (UE) is limited to 6

 Transmit FDE is used to obtain frequency-diversity gain 
 Simple addition/subtraction and complex conjugation operations 

required at UE
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 H. Tomeba, K. Takeda and F. Adachi, “Space-Time Block Coded Joint Transmit/Receive
Diversity in a Frequency-Nonselective Rayleigh Fading Channel,” IEICE Trans. Commun.,
Vol.E89-B, No.8, pp.2189-2195, Aug. 2006.

 H. Tomeba, K. Takeda, and F. Adachi, "Space-Time Block Coded-Joint Transmit/Receive
Antenna Diversity using more than 4 Receive Antennas, 2008 IEEE 68th Vehicular
Technology Conference (VTC-Fall), Calgary, Canada, 21-25 September 2008.

 R. Matsukawa, T. Obara, and F. Adachi, “Frequency-Domain Space-Time Block Coded
Transmit/Receive Diversity For Single-Carrier Distributed Antenna Network,” IEICE
Communications Express (ComEX), Vol. 2, No. 4, pp. 141-147, 15 April, 2013.
http://dx.doi.org/10.1587/comex.2.141.



STBC Diversity
OFDM Downlink
 STBC diversity with MMSE transmit FDE

 It allows an arbitrary number of transmit antennas although the number 
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MU-MIMO w/ MMSE-SVD
OFDM Downlink
 Downlink MMSE-SVD

 MMSE transmit filtering at MBS to suppress inter-user interference (IUI)
 Eigenmode reception at UE to remove inter-antenna interference (IAI) at 

UE
 Water-filling power allocation across eigenmodes and subcarriers for 

each UE at MBS
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 Shinya Kumagai, Yuta Seki, and Fumiyuki Adachi, "Joint Tx/Rx Signal
Processing for Distributed Antenna MU-MIMO Downlink," to be
presented at 2016 IEEE 84th Vehicular Technology Conference (IEEE
VTC2016-Fall), Montréal, Canada, 18–21 Sept. 2016.



Simulation Setting up/downlinks
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Tx/Rx

SC uplink
FDMA STBC diversity w/Rx FDE [1]

MU-MIMO MMSE-SVD [2]

OFDM downlink
FDMA STBC diversity w/Tx FDE [3]

MU-MIMO MMSE-SVD [4]
Total no. of subcarriers Nc=128

GI length Ng=32
No. of distributed antennas 
deployed in a macro-cell Nmacro=7

No. of UE antennas Nue=2
No. of distributed antennas to 

be selected Nmbs=4

Channel state information Ideal

Propag. 
Channel

Path loss exponent =3.5
Shadowing loss

standard deviation =7.0(dB)

Type of fading Frequency-selective block Nakagami-Rice 
and Rayleigh

K factor of Nakagami-Rice K=10dB
Delay profile shape L=16 - uniform

[1] K. Takeda, T. Itagaki, and F. Adachi, IEE Proc. –Commun., Vol. 151, No. 6, pp. 627-632, Dec. 2004.
[2] S. Kumagai, S. Yoshioka, and F. Adachi, ICICS2015, Singapore, 2-4 Dec. 2015.
[3] H. Tomeba, K. Takeda, and F. Adachi, IEICE Trans. Commun., Vol.E89-B, No.8, pp.2189-2195, Aug. 2006.
[4] S. Kumagai, Y. Seki, and F. Adachi, IEEE VTC2016-Fall, Montréal, Canada, 18–21 Sept. 2016.



Network Model
 SC uplink and OFDM downlink (2 UEs and Nc=128 subcarriers)

 STBC diversity: Nc/2=64 subcarriers/UE
 MMSE-SVD: Nc=128 subcarriers are shared by 2 UEs

 Nmbs=4 distributed antennas are selected from Nmacro=7 
distributed antennas deployed in a macro-cell area

 Interference-limited condition
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Distributed antenna small-cell network
(7 distributed antennas/macro-cell)

Distributed 
antenna

7/RR 

UE

Macro-cell 
of interest

R

Traditional macro-cell (7 co-
located antennas/macro-cell)



OFDM Downlink Capacity
Spatial Distribution
 OFDM 

downlink
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 H. Miyazaki and F. Adachi, “Effect of Macro-cell Cooperation on
Distributed Antenna Space-Time Block Coded Diversity,” IEICE
Technical Report, vol. 115, no. 369, RCS2015-273, pp. 175-180,
Dec. 2015.

 S. Kumagai, S. Yoshioka, and F. Adachi, “Joint Tx/Rx Filtering for
Distributed Antenna Network Uplink with Single-Carrier MU-MIMO,”
IEICE Technical Report, vol. 114, no. 490, RCS2014-354, pp. 315-
320, March 2015.

 S. Kumagai and F. Adachi, “Effect of Joint Tx/Rx Cooperative Signal
Shinya Kumagai, Yuta Seki, and Fumiyuki Adachi, "Joint Tx/Rx
Signal Processing for Distributed Antenna MU-MIMO Downlink," to
be presented at 2016 IEEE 84th Vehicular Technology Conference
(IEEE VTC2016-Fall), Montréal, Canada, 18–21 Sept. 2016.



OFDM Downlink
Capacity
 Distributed antenna cooperative signal transmission can 

significantly improve the up/downlink capacities compared to the 
traditional macro-cell network using co-located antennas

 OFDM downlink capacity distribution

2016/7/7 FA/Tohoku University 26

1.E-02

1.E-01

1.E+00

1.E+01 1.E+02 1.E+03 1.E+04

Pr
ob

. (
C

U
E

< 
ab

sc
iss

a)

Downlink capacity per UE CUE (Mbps/Hz)

STBC diversity using 
transmit FDE

MU-MIMO using downlink 
MMSE-SVD

Interference-limited condition
Nc=128,Ng=32, Nt=4, Nr=2
=3.5, s=7.0dB K=10dB, 
L=16 Uniform PDP
Ideal CE, B=100MHz

Virtual macro-cell w/ 
distributed antenna 
cooperative 
transmission (MIMO)

Macro-cell network

SISO

Downlink capacity per UE CUE (Mbps)   Downlink capacity per UE CUE (Mbps/100MHz)   

Downlink user capacity (Mbps/100MHz)

OFDMA

Downlink sum capacity (Mbps/100MHz)

1.E-02

1.E-01

1.E+00

1.E+01 1.E+02 1.E+03 1.E+04

Pr
ob

. (
C

su
m

< 
ab

sc
iss

a)

Downlink sum capacity Csum (Mbps/Hz)

STBC diversity 
using transmit FDE

MU-MIMO using 
downlink MMSE-SVD

Interference-limited condition
Nc=128,Ng=32, Nt=4, Nr=2
=3.5, s=7.0dB K=10dB, 
L=16 Uniform PDP
Ideal CE, B=100MHz

Virtual macro-cell 
w/ distributed 
antenna cooperative 
transmission (MIMO)Macro-cell network

SISO

Downlink sum capacity Csum (Mbps)   Downlink sum capacity Csum (Mbps/100MHz)   

OFDMA

 H. Miyazaki and F. Adachi, “Effect of Macro-cell Cooperation on Distributed
Antenna Space-Time Block Coded Diversity,” IEICE Technical Report, vol. 115,
no. 369, RCS2015-273, pp. 175-180, Dec. 2015.

 S. Kumagai, S. Yoshioka, and F. Adachi, “Joint Tx/Rx Filtering for Distributed
Antenna Network Uplink with Single-Carrier MU-MIMO,” IEICE Technical
Report, vol. 114, no. 490, RCS2014-354, pp. 315-320, March 2015.

 S. Kumagai and F. Adachi, “Effect of Joint Tx/Rx Cooperative Signal
Processing on Downlink Broadband MU-MIMO Transmissions in Distributed
Antenna Network,” IEICE Technical Report, vol. 115, no. 369, RCS2015-274,
pp. 181-186 Dec. 2015.



PAPR Problem
 Low PAPR signal waveform design is still necessary for the 

uplink
 Single-carrier based waveform is attractive because of its low PAPR 

property, but its PAPR grows when transmit filtering is employed

 E.g. square root Nyquist transmit filtering case
 Roll-off factors of =0 and 0.5
 QPSK data modulation and 16-symbol block transmission
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Selected Mapping
(SLM)
 A number of transmit signal waveform candidates are generated 

by using phase rotation sequences
 Phase rotation can be applied either in frequency-domain (FD-

SLM) or time-domain (TD-SLM)
 The signal waveform candidate having the lowest PAPR is selected 
 Simple and distortionless PAPR reduction, but needs transmission 

of side-information to receiver side
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Selected Mapping
(SLM)
 Comparison between FD-SLM and TD-SLM

 Random binary phase rotation
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Blind SLM
 Blind SLM exploits the fact that the received signal 

constellation patternl with correct de-mapping and incorrect 
de-mapping are significantly different

 No need of side-information (phase rotation pattern) 
sharing
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Blind SLM
 Uncoded BER performance comparison
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Concluding Remarks
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 After 35 years from the birth of 1G 
network in Dec. 1979 in Japan, mobile 
wireless communications networks 
have evolved into 4G networks

 5G requires simultaneous 
improvement of spectrum efficiency 
and energy efficiency
 5G networks will be a small-cell 

network

 Distributed antenna small-cell 
network is a promising 5G network
 User-centric virtual small-cell
 Cooperative signal transmission

 Radio and optical link convergence 
plays an important role in 5G beyond
 Fully coherent optical transmission
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