IEICE Information and Communication Technology Forum 2016 (ICTF 2016), Patras, Greece, 6 - 7 July, 2016

<u>Effective Exploitation of Spatial</u> Domain for 5G Small-cell Structured Mobile Networks

Fumiyuki Adachi Wireless Signal Processing Research Group., Research Organization of Electrical Communication,

Tohoku University, Japan

E-mail: adachi@ecei.tohoku.ac.jp

http://www.mobile.ecei.tohoku.ac.jp/

OUTLINE

Mobile Wireless Evolution

- Evolution into 5G
- Cell Densification
- User-centric Virtual Small-cell
- Distributed Antenna Cooperative Signal Transmission
 - Space-time Block Coded Diversity
 - Multiuser MIMO
 - Blind SLM
- Concluding Remarks

FA/Tohoku University

2016/7/7

Acknowledgement:

of Internal Affairs and

results of "The research and

of the fifth-generation mobile

This presentation includes a part of

development project for realization

communications system" (#0155-

Tohoku University by The Ministry

Communications (MIC), Japan.

0199, April 2016) commissioned to

Evolution Into 5G

F. Adachi, "Wireless past and future evolving mobile communications systems," IEICE Trans. Fundamentals, vol. E84-A, pp.55-60, Jan. 2001

- Taking 35 years (1980~2015), mobile wireless networks have evolved from 1G of few kbps (voice) to 4G of a few giga bps (data)
 - 4G/LTE-A started in March 2015 in Japan
 - 4G/LTE-A is designed to achieve a spectrum efficiency per BS of 30bps/Hz/BS
- Mobile wireless networks have become an important infrastructure of our modern society
 - Almost every one is connected to Internet via 3G/4G and WiFi networks

Explosive Growth of Mobile Data Traffic (1,000 times in 10 years)

Due to rapid popularity of smart phones, mobile data traffic is growing at a rate of close-to-2 times per year

data

Vobile

- This growth rate leads to about 1,000 times of 2010 traffic volume by 2020
 Present 4G networks
- Present 4G networks cannot cope with this rapid growth
- Traffic gathers in hotspots and local areas
 - 70% in offices and hotspots, over 90% in future
 - QoS cannot be guaranteed in hotspots!

2016/7/7

New Services in 5G

- Broadband mobile data services will become more and more popular
- New services will come out in the near future
 - IoT related massive devices connection
 - ITS and machine control applications

5G Requirements

"5G Vision – The 5G Infrastructure Public Private Partnership (5G-PPP): the next generation of communication networks and services," available at www.5g-ppp.eu, Feb. 2015.

Cell-densification

- Transmission capability of BS (bps/BS) is limited
- The spatial distribution of users/devices should be more exploited
 - This is within the context of cellular concept

6

Cell-densification

- Transmission capability of BS (bps/BS) is limited
- The spatial distribution of users/devices should be more exploited
 - This is within the context of cellular concept

7

5G Technical Issues Toward Mobile Broadband Services

- How to achieve a peak data rate *C* of 10Gbps/BS and a bit rate density η of 10 Tbps/km² in a strong CCI environment?
 - BS capacity C (bps/BS) and capacity density η (bps/km²) w/ MIMO using N_t transmit and N_r receive antennas

$$\begin{cases} C = \left(\frac{B \times \frac{1}{F}}{F} \right) \times N_r \times \log_2(1 + \Lambda) & \text{if } N_t = N_r >> 1 \\ \eta = C / A \end{cases}$$

where

$$B =$$
 system bandwidth, $F =$ frequency reuse factor,

$$N_r = N_t$$
 = no. of antennas, Λ = cell edge SINR

A = BS coverage area

- Promising approaches
 - Reducing $F \rightarrow 1$: dynamic reuse of the same freq. (scheduling)
 - Increasing B: >>100MHz
 - Increasing N_r : $N_r > >1$ (massive MIMO)
 - Reducing A: cell densification (small-cell networks)

2016/7/7

FA/Tohoku University

5G Technical Issues Toward Mobile Broadband Services

One design example

$$\begin{cases} B = 400 \text{ MHz}, \ F = 1, \ N_r (= N_t) = 4, \ \Lambda = 20 \text{ dB} \\ A = 1,000 \text{ m}^2 (\text{cell radious} = 12.6 \text{ m}) \\ \text{provides} \\ \left\{ C \approx 10 \text{ Gbps/BS} \\ \eta \approx 10 \text{ Tbps/km}^2 \end{cases}$$

Macro-cell network

Small-cell network

- Small-cell structured network by cell densification
 - Because of near single-user access/BS, a user is able to occupy the whole bandwidth if F→1 and accordingly, to increase the user data rate significantly
- Higher frequency bands, where abundant bandwidths remain unused, can be used, e.g., centimeter wave, millimeter wave, and even visible light bands, can be used FA/Tohoku University

Two Approaches for Small-cell Network

Distributed antenna approach

- A large number of antennas are deployed in a macro-cell area instead of using massive MIMO at macro-cell BS
- A group of distributed antennas nearby a user forms a virtual small-cell
- Small-cell base station (SBS) approach
 - A number of loosely coordinating small-cell BSs (SBSs) are deployed in a macro-cell area
 - Decentralized radio resource management

Antenna becomes one dimension in resource management
Handover is replaced by antenna reallocation within a virtual macro-cell

Distributed antenna approach

baseband

TRx controlle

FA/Tohoku University

It may be wise to exploit Near single-Macro-cell more the spatial domain area user access • A large number of antennas are deployed in a macro-cell area Each distributed antenna is connected to macro-cell BS (MBS) by optical link A group of distributed antennas nearby a user forms a user centric virtual smallcell within a macro-cell area **User-centric** Handover problem can Pool of virtual be replaced with antenna baseband small-cell selection problem TRx's **Optical** TRx Path loss and shadowing loss controller link problems can be mitigated **ABS** Near single-user access is possible **MBS TRx Distributed** antenna small-cell network

Two types of virtual small-cell

2016/7/7

FA/Tohoku University

- The same received signal representation
- The channel matrix H is different
 - Centralized massive MIMO: dense H
 - Distributed massive MIMO: sparse H

F. Adachi, "Wireless Optical Convergence Enables Spectrum-Energy Efficient Wireless Networks," Proc. 2014 International Topical Meeting on Microwave Photonics/the 9th Asia Pacific Microwave Photonics (MWP/APMP 2014), pp.51-56, Sapporo, Japan, 20-23 Oct. 2014.

- N BS antennas
- N users (equipped with single antenna)
- TDD

Centralized massive MIMO

- Distributed massive MIMO
- □ Uplink access BS received signal $\mathbf{y} = \mathbf{w}_r \mathbf{H} \mathbf{d} + \mathbf{N}$ Signal detection $\hat{\mathbf{d}} = \mathbf{w}_r \mathbf{y}$ with $\mathbf{w}_r = (\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H$
- Downlink access Precoding $\mathbf{x} = \mathbf{w}_t^* \mathbf{d}$ with $\mathbf{w}_t = \mathbf{H} (\mathbf{H}^H \mathbf{H})^{-1}$ User received singal $\mathbf{y} = \mathbf{H}^T \mathbf{x} + \mathbf{N}$

For centralized massive MIMO, computationally demanding signal processing (multi-user detection and precoding) is required

$$\mathbf{H} = \begin{pmatrix} \boldsymbol{H}_{0,0} & \cdots & \boldsymbol{H}_{0,N-1} \\ \cdots & \ddots & \cdots \\ \boldsymbol{H}_{N-1,0} & \cdots & \boldsymbol{H}_{N-1,N-1} \end{pmatrix}$$

 $H_{\scriptscriptstyle N-1,N-1}$

2016/7/7

FA/Tohoku University

14

Severely Frequencyselective Channel

- Transmitted radio waves are reflected or diffracted by some large buildings, creating resolvable paths having time delays of multiple of (signal bandwidth)⁻¹
- Each resolvable path is the sum of irresolvable paths created by local scatterers surrounding a mobile
- The path gain h_i(t) varies in time according to the movement of mobile terminal since resolvable paths are added constructively at one time and destructively at another time

Severely Frequencyselective Channel

- The transfer function H(f, t) of broadband channel at time t is not constant and varies over the signal bandwidth $H(f,t) = \sum_{l=1}^{L-1} h_l(t) \exp(-j2\pi f \tau_l)$
 - L=16 uniform power delay profile

l = 0

- *l*-th path time delay=100*l* + [-50,50)ns
- In such a severely frequency-selective channel, advanced equalization technique is necessary
 - OFDMA with frequencydomain equalization (FDE)
- Single-carrier access with FDE 2016/7/7 FA/Tohoku University

16

Frequency-domain Equalization (FDE)

- □ SC is a family of OFDM
 - SC transceivers can be designed based on OFDM
 - FFT at transmitter acts as the precoder of OFDM
 - There may be different precoders which generate many different waveforms between OFDM and SC

TDD Allows Transmit Equalization

- TDD can exploit the channel reciprocity to introduce the transmit equalization without the feedback of channel state information (CSI) from user equipments (UEs)
- Computationally demanding signal processing can be done at a virtual MBS, thereby alleviating the complexity problem of UEs

Distributed Antenna Cooperative Signal Transmission

- A group of distributed antennas nearby a user terminal forms a user-centric virtual small-cell
- Space-time block coded (STBC) diversity and multiuser spatial multiplexing are used to improve the throughput in the virtual small-cell
 Space-time block coded
 Pool of baseband TRx's

FA/Tohoku University

STBC Diversity OFDM Downlink

- H. Tomeba, K. Takeda and F. Adachi, "Space-Time Block Coded Joint Transmit/Receive Diversity in a Frequency-Nonselective Rayleigh Fading Channel," IEICE Trans. Commun., Vol.E89-B, No.8, pp.2189-2195, Aug. 2006.
- H. Tomeba, K. Takeda, and F. Adachi, "Space-Time Block Coded-Joint Transmit/Receive Antenna Diversity using more than 4 Receive Antennas, 2008 IEEE 68th Vehicular Technology Conference (VTC-Fall), Calgary, Canada, 21-25 September 2008.
- R. Matsukawa, T. Obara, and F. Adachi, "Frequency-Domain Space-Time Block Coded Transmit/Receive Diversity For Single-Carrier Distributed Antenna Network," IEICE Communications Express (ComEX), Vol. 2, No. 4, pp. 141-147, 15 April, 2013. http://dx.doi.org/10.1587/comex.2.141.
- STBC diversity with MMSE transmit FDE
 - It allows an arbitrary number of transmit antennas although the number of receive antennas at a user equipment (UE) is limited to 6
 - Transmit FDE is used to obtain frequency-diversity gain
 - Simple addition/subtraction and complex conjugation operations required at UE
 No. of

Transmit signal processing	No. of transmit distributed antennas <i>N_{mbs}</i>	No. of UE receive antennas <i>N_{ue}</i>	J	Q	Coding rate		
time : :#		1	1	1	1		
	mbs ⁻ '	2	2	2	1		
		3	3	4	3/4		
	#0	4	3	4	3/4		
Transmit FDE		5	10	15	2/3		
		6	20	30	2/3		
When $J = Q = 2$ (Alamouti code) $\mathbf{X}(k) = \begin{bmatrix} D_0(k) & -D_1^*(k) \\ D_1(k) & D_0^*(k) \end{bmatrix}$ $\mathbf{W}_{txFDE}(k) = A \mathbf{H}_{\downarrow}^H(k)$ $\mathbf{H}_{\downarrow}(k) = \begin{bmatrix} H_{0,0}(k) & H_{0,1}(k) & \cdots & H_{0,N_{mbs}-1}(k) \\ H_{1,0}(k) & H_{1,1}(k) & \cdots & H_{1,N_{mbs}-1}(k) \end{bmatrix}$ 20							

STBC Diversity OFDM Downlink

- H. Tomeba, K. Takeda and F. Adachi, "Space-Time Block Coded Joint Transmit/Receive Diversity in a Frequency-Nonselective Rayleigh Fading Channel," IEICE Trans. Commun., Vol.E89-B, No.8, pp.2189-2195, Aug. 2006.
- H. Tomeba, K. Takeda, and F. Adachi, "Space-Time Block Coded-Joint Transmit/Receive Antenna Diversity using more than 4 Receive Antennas, 2008 IEEE 68th Vehicular Technology Conference (VTC-Fall), Calgary, Canada, 21-25 September 2008.
- R. Matsukawa, T. Obara, and F. Adachi, "Frequency-Domain Space-Time Block Coded Transmit/Receive Diversity For Single-Carrier Distributed Antenna Network," IEICE Communications Express (ComEX), Vol. 2, No. 4, pp. 141-147, 15 April, 2013. http://dx.doi.org/10.1587/comex.2.141.
- STBC diversity with MMSE transmit FDE
 - It allows an arbitrary number of transmit antennas although the number of receive antennas at a user equipment (UE) is limited to 6
 - Transmit FDE is used to obtain frequency-diversity gain
 - Simple addition/subtraction and complex conjugation operations required at UE

MU-MIMO w/ MMSE-SVD OFDN Downlink Shinya Kumagai, Yuta Seki, and Fumiyuki Adachi, "Joint Tx/Rx Signal Processing for Distributed Antenna MU-MIMO Downlink," to be presented at 2016 IEEE 84th Vehicular Technology Conference (IEEE VTC2016-Fall), Montréal, Canada, 18–21 Sept. 2016.

- Downlink MMSE-SVD
 - MMSE transmit filtering at MBS to suppress inter-user interference (IUI)
 - Eigenmode reception at UE to remove inter-antenna interference (IAI) at UE
 - Water-filling power allocation across eigenmodes and subcarriers for each UE at MBS

Simulation Setting up/downlinks

Tx/Rx	SC uplink	FDMA	STBC diversity w/Rx FDE [1]			
		MU-MIMO	MMSE-SVD [2]			
	OFDM downlink	FDMA	STBC diversity w/Tx FDE [3]			
		MU-MIMO	MMSE-SVD [4]			
	Total no. of subcarriers		<i>N_c</i> =128			
	GI length		N _g =32			
	No. of distributed antennas deployed in a macro-cell		N _{macro} =7			
	No. of UE antennas		<i>N_{ue}</i> =2			
	No. of distributed antennas to be selected		$N_{mbs} = 4$			
	Channel state information		Ideal			
Propag. Channel K facte De	Path loss exp	onent	α=3.5			
	Shadowing loss standard deviation		σ=7.0(dB)			
	Type of fading		Frequency-selective block Nakagami-Rice and Rayleigh			
	K factor of Nakagami-Rice		<i>K</i> =10dB			
	Delay profile shape		L=16 - uniform			

[1] K. Takeda, T. Itagaki, and F. Adachi, IEE Proc. –Commun., Vol. 151, No. 6, pp. 627-632, Dec. 2004.

[2] S. Kumagai, S. Yoshioka, and F. Adachi, ICICS2015, Singapore, 2-4 Dec. 2015.

[3] H. Tomeba, K. Takeda, and F. Adachi, IEICE Trans. Commun., Vol.E89-B, No.8, pp.2189-2195, Aug. 2006.

[4] S. Kumagai, Y. Seki, and F. Adachi, IEEE VTC2016-Fall, Montréal, Canada, 18–21 Sept. 2016.

2016/7/7

FA/Tohoku University

Network Model

- **SC** uplink and OFDM downlink (2 UEs and N_c =128 subcarriers)
 - STBC diversity: $N_c/2=64$ subcarriers/UE
 - MMSE-SVD: $N_c = 128$ subcarriers are shared by 2 UEs
- N_{mbs}=4 distributed antennas are selected from N_{macro}=7 distributed antennas deployed in a macro-cell area
- Interference-limited condition

OFDM Downlink Capacity Spatial Distribution

- H. Miyazaki and F. Adachi, "Effect of Macro-cell Cooperation on Distributed Antenna Space-Time Block Coded Diversity," IEICE Technical Report, vol. 115, no. 369, RCS2015-273, pp. 175-180, Dec. 2015.
- S. Kumagai, S. Yoshioka, and F. Adachi, "Joint Tx/Rx Filtering for Distributed Antenna Network Uplink with Single-Carrier MU-MIMO," IEICE Technical Report, vol. 114, no. 490, RCS2014-354, pp. 315-320, March 2015.
- S. Kumagai and F. Adachi, "Effect of Joint Tx/Rx Cooperative Signal Shinya Kumagai, Yuta Seki, and Fumiyuki Adachi, "Joint Tx/Rx Signal Processing for Distributed Antenna MU-MIMO Downlink," to be presented at 2016 IEEE 84th Vehicular Technology Conference (IEEE VTC2016-Fall), Montréal, Canada, 18-21 Sept. 2016.

1000,

800

600

400

200

1000

throughput

Jəsn 400 h

Downlink L

0

25

(Mbps/100MHz)

0

Downlink user throughput

100MHz

(Mbps/

OFDM Downlink Capacity

- H. Miyazaki and F. Adachi, "Effect of Macro-cell Cooperation on Distributed Antenna Space-Time Block Coded Diversity," IEICE Technical Report, vol. 115, no. 369, RCS2015-273, pp. 175-180, Dec. 2015.
- S. Kumagai, S. Yoshioka, and F. Adachi, "Joint Tx/Rx Filtering for Distributed Antenna Network Uplink with Single-Carrier MU-MIMO," IEICE Technical Report, vol. 114, no. 490, RCS2014-354, pp. 315-320, March 2015.
- S. Kumagai and F. Adachi, "Effect of Joint Tx/Rx Cooperative Signal Processing on Downlink Broadband MU-MIMO Transmissions in Distributed Antenna Network," IEICE Technical Report, vol. 115, no. 369, RCS2015-274, pp. 181-186 Dec. 2015.
- Distributed antenna cooperative signal transmission can significantly improve the up/downlink capacities compared to the traditional macro-cell network using co-located antennas

I A/ IUHUKU UHİVERSİLY

PAPR Problem

- Low PAPR signal waveform design is still necessary for the uplink
 - Single-carrier based waveform is attractive because of its low PAPR property, but its PAPR grows when transmit filtering is employed
- E.g. square root Nyquist transmit filtering case
 - Roll-off factors of $\alpha = 0$ and 0.5
 - QPSK data modulation and 16-symbol block transmission

Selected Mapping (SLM)

A. Boonkajay et al., "Selective Mapping for Broadband Single-Carrier Transmission Using Joint Tx/Rx MMSE-FDE," Proc. PIMRC 2013, London, UK, Sept. 2013.

- A. Boonkajay et al., "Low-PAPR Joint Transmit/Received SC-FDE Transmission using Time-Domain Selected Mapping," Proc. APCC 2014, Pattaya, Thailand, Oct. 2014.
- A number of transmit signal waveform candidates are generated by using phase rotation sequences
- Phase rotation can be applied either in frequency-domain (FD-SLM) or time-domain (TD-SLM)
- The signal waveform candidate having the lowest PAPR is selected
- Simple and distortionless PAPR reduction, but needs transmission of side-information to receiver side
 Phase rotation

Selected Mapping (SLM)

- A. Boonkajay et al., "A Blind Selected Mapping Technique for Low-PAPR Single-Carrier Signal Transmission," Proc. ICICS2015, Singapore, Dec. 2015.
- A. Boonkajay et al., "Frequency-Domain Blind Selected Mapping Technique for Space-Time Block Coded Low-PAPR SC-FDE," IEICE Tech. Rep. Radio Commun. Syst. (RCS), Dec. 2015.
- Comparison between FD-SLM and TD-SLM
 - Random binary phase rotation

FA/Tohoku University

Blind SLM

A. Boonkajay et al., "A Blind Selected Mapping Technique for Low-PAPR Single-Carrier Signal Transmission," Proc. ICICS2015, Singapore, Dec. 2015.

- Blind SLM exploits the fact that the received signal constellation patternl with correct de-mapping and incorrect de-mapping are significantly different
- No need of side-information (phase rotation pattern)

Blind SLM

- A. Boonkajay et al., "A Blind Selected Mapping Technique for Low-PAPR Single-Carrier Signal Transmission," Proc. ICICS2015, Singapore, Dec. 2015.
- A. Boonkajay et al., "Frequency-Domain Blind Selected Mapping Technique for Space-Time Block Coded Low-PAPR SC-FDE," IEICE Tech. Rep. Radio Commun. Syst. (RCS), Dec. 2015.

Uncoded BER performance comparison

Concluding Remarks

- After 35 years from the birth of 1G network in Dec. 1979 in Japan, mobile wireless communications networks have evolved into 4G networks
- 5G requires simultaneous improvement of spectrum efficiency and energy efficiency
 - 5G networks will be a small-cell network
- Distributed antenna small-cell network is a promising 5G network
 - User-centric virtual small-cell
 - Cooperative signal transmission
- Radio and optical link convergence plays an important role in 5G beyond
 - Fully coherent optical transmission

virtual

small-cell