
Exploiting Noise in Computation

Ferdinand Peper

National Institute of Information and Communications Technology, Nano ICT Group
588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651–2492 Japan

Email: peper@nict.go.jp

Abstract—Noise and Fluctuations are usually consid-
ered obstacles in the operation of electronic and mechani-
cal devices, and most strategies to deal with them revolve
around suppressing them. This paper focuses on systems
that employ different strategies, i.e., strategies that can ex-
ploit the properties of noise to improve the efficiency of
operations. These strategies may be an important ingredi-
ent in the designs of computers with devices of nanometer-
scale feature sizes.

1. Introduction

Scientists and engineers are trained to think of noise as
an unwelcome phenomenon that needs to be suppressed
in order to decrease its ratio to signal levels. Various
techniques are used to deal with noise, like Error Control
Codes, which encode information redundantly such that its
original contents can be recovered in case of data corrup-
tion. These traditional techniques, however, have their lim-
itations, especially when signal levels become very low, as
is increasingly the case in applications like integrated elec-
tronics. When scales are in the range of nanometers, noise
takes on a major role, and it is quite remarkable that bio-
logical organisms can cope so well with it. Molecular mo-
tors, which play an important role in cellular transport and
in muscular movements, typically work in an environment
full of Brownian motion and still manage to conduct their
tasks with a remarkable efficiency. The spiking activity of
neurons in the brain is another example in which noise ap-
pears to have only limited negative effects on the tasks be-
ing conducted. What are the secrets of these natural feats
and can engineers use similar mechanisms when designing
complex systems? In this paper, we discuss computation
methods that aim to exploit noise actively, as an alternative
to the usual way of just coping with the deleterious effects
of noise.

2. Brownian circuits

Brownian circuits use discrete undividable units (called
tokens) as signals, which are allowed to fluctuate in ran-
dom semi-controlled ways within the confines of the circuit
topology. There is no clock in Brownian circuits, unlike
in traditional logic circuits in which the clock is responsi-
ble for making all circuit elements work in lock-step. The

lack of a clock is usually indicated by the term asynchro-
nous timing. Brownian circuits actively exploit fluctuations
of signals, rather than treating them as a nuisance: they
use fluctuations as a mechanism to make signals randomly
search their way through a circuit from the input side of a
circuit along a computational path until the system settles
in an output state. Though a random search is regarded as
time-inefficient in computational models, it does have the
advantage of allowing signals to travel to certain locations
in a circuit without there being required an explicit mech-
anism to accomplish this. Deadlocks, which are common
in token-based circuits, are one of the situations that can
be avoided or resolved through random search. Without
fluctuations, tokens will move in one direction (forward),
and the only way out of a deadlock is via additional path-
ways in a circuit to redirect deadlocked tokens away from
their static state. Enter fluctuations, however, and tokens
can suddenly backtrack out of deadlocks, without the need
for such pathways.

Logic circuits can be constructed from a few primitives,
like an AND-gate and a NOT-gate, and this is why these
gates are called universal. Logic gates only work when sig-
nals are synchronized, so the presence of a clock is implic-
itly assumed. Absent a clock, additional functionality is re-
quired to make up for the lack of synchronization function-
ality. Because of this, the primitives for token-based cir-
cuits tend to be more complex than those for logic circuits.
Examples of primitives for token-based circuits are the so-
called FORK, P-MERGE, and TRIA (see [4]), which to-
gether form a universal set. The FORK and the P-MERGE
primitive have both three input- or output-wires, but the
TRIA has six, which is a substantial increase in complexity
over AND-gates and NOT-gates. Surprisingly, it has been
found that the presence of fluctuations of tokens in circuits
allows a lower number of primitives, each with less wires.
In [7] only one primitive is required to achieve universal-
ity, but this primitive has still six input or output wires.
A different set of primitives for Brownian circuits, which
requires two primitives—each though with less wires—is
proposed in [3, 5] and discussed in this paper.

The first primitive is the Hub, which contains three wires
that are bidirectional (Fig. 1). There will be at most one
token at a time on any of the Hub’s wires, and this token
can move to any of the wires due to its fluctuations.

The second primitive is the Conservative Join (CJoin),
which has two input wires and two output wires (Fig. 2).

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 270 -

Figure 1: Hub and
its transitions. Fluc-
tuations cause a token
to move between the
Hub’s three wires in any
order.

Figure 2: CJoin and its tran-
sitions. If there is a token
on only one input wire, this
token remains pending until
a token arrives on the other
wire. These two tokens will
then result in one token on
each of the two output wires.
The reverse transition may
also take place.

The CJoin can be interpreted as a synchronizer of two to-
kens passing through it. Tokens may fluctuate on the input
wires of a CJoin, but once processed by the CJoin, they
will be placed on the output wires, where they will also
fluctuate. The operation of the CJoin may also be reversed.
When connecting CJoins to each other, we should make
sure that input terminals face output terminals. Hubs, hav-
ing bi-directional wires, may be connected in any way to
CJoins or other Hubs.

Fig. 3 gives a circuit constructed from Hubs and CJoins,
which acts like a Half-Adder [5]. Input and output to this

Output
(Sum)1 0

Output
(Carry)
1

0

1 0Input

Input

1

0

Figure 3: Half-Adder constructed from four CJoins and
eight Hubs. The tokens still at the input terminals encode
the input signals 1 and 1.

Half-Adder is represented through dual-rail encoding, a
well-known way to encode information in token-based cir-
cuits. Dual-rail encoding represents a binary signal through
two wires: the 0-wire, which encodes the signal 0 when it
contains a token, and the 1-wire doing the same for the sig-
nal 1. The absence of tokens on both the 0-wire as the
1-wire at a certain time indicates a spacer between signals.
An erroneous situation occurs when there is a token on the
0-wire at the same time as a token on the 1-wire, so this is
to be avoided. The input to the Half-Adder in Fig. 3 is 1

at one input and 1 at the other input, and the corresponding
tokens on the respective 1-wires are allowed to fluctuate in
areas that are indicated by dashed lines. These areas indi-
cate the searching space of the tokens. There is only one
CJoin where these two different areas come together, and it
is this CJoin that will eventually process the two input to-
kens when they are present at the same time at the CJoin’s
input terminal.

After the CJoin has operated on the input tokens, the cir-
cuit will be in the state shown in Fig. 4. The tokens can now

Output
(Sum)1 0

Output
(Carry)
1

0

1 0Input

Input

1

0

Figure 4: Half-Adder after the two input tokens have been
processed by a CJoin.

fluctuate in the post-operation areas indicated by dashed
lines, and these areas include the output terminals 0-Sum
and 1-Carry of the circuit. It is reasonable to assume that
these are the outputs of the circuits, were it not for the con-
tinuously fluctuating behavior of the tokens. The CJoin, it
must be noted, is reversible in its operations, so the two
output tokens can just as well be reverted into the origi-
nal input state of the circuit. Obviously, this is undesirable
behavior for circuits, and in order to make it more in line
with conventional circuits, we introduce so-called Ratchets
(Fig. 5). A ratchet is placed on a wire of a circuit and it

Figure 5: A ratchet is indicated as a triangle on a wire, and
its transition. A token can move over the ratchet in its pre-
ferred direction, but backwards movement is impossible.

restricts a signal’s movement on that wire to one direction
(forward). Ratchets are usually placed in a circuit such as
to bias signals toward the circuit’s output terminals. On
wires where no searching behavior is required, ratchets can
be freely placed. Fig. 6 shows the Half-Adder circuits with
ratchets placed in selected locations. On wires involved
in searching behavior of fluctuating tokens ratchets are un-
welcome, because they restrict random search to certain di-
rections, thereby jeopardizing the circuit’s operation. This
is the reason why there are no ratchets in the circuit at the

- 271 -

Output
(Sum)1 0

Output
(Carry)
1

0

1 0Input

Input

1

0

A

B

Figure 6: Ratchets placed on wires inside a Half-Adder re-
strict movements of tokens in the circuit. After the tokens
have been processed by CJoin A, their fluctuations will be
limited as they move over more and more ratchets. Initially
CJoin B becomes unreachable for the right-most token, due
to the ratchet placed at the upper output wire of B.

input sides of CJoins.
Once the tokens are near the output terminals, they have

hardly any space left to fluctuate (Fig. 7), and it is in this
state that we consider the circuit operation finished. As

Output
(Sum)1 0

Output
(Carry)
1

0

1 0Input

Input

1

0

Figure 7: Tokens at output terminal in a ratcheted circuit.
The searching space of the tokens has been restricted by
the ratchets nearest to the output terminals.

seen above, ratchets offer much potential to speed up the
operation of Brownian circuits; they do so by restricting
the Brownian search process at selected locations. Another
method to speed up operation is to bias tokens away from
the centers of wires and toward input and output terminals
of CJoins, where the probability of running into a CJoin
with a token at its other input terminal is highest. Chaos
has been used in [1] with this purpose in mind.

When fluctuations of tokens are inhibited, the tokens be-
come unable to search in the circuit for a CJoin at which
they can be matched. Consequently, a deadlock will take

place at the input terminal of a CJoin if only one token has
arrived at it, because a second token would be needed at the
other input terminal to make the CJoin process the tokens.
When no fluctuations of signals are allowed, the Hub and
CJoin fail to form a universal set of primitives for token-
based circuits. Fluctuations thus add functionality to cir-
cuits, and because of them primitives require less complex
designs to become universal.

The role of fluctuations in simplifying primitives in
Brownian circuits also extends to other computational
models. The Cellular Automaton (CA) model in [3]
achieves computational universality by simulating Brown-
ian circuits on its cell space. This CA updates its cells in
an asynchronous way, i.e., by randomly selecting one cell
in each step and updating it if the states of itself and of
its direct neighbors match the transition rules of the model.
Asynchronous updating does not rely on a central clock
signal to time the updates of cells, and consequently it tends
to require an increased number of cell states and transition
rules to deal with all possible orders in which updates can
take place. The Brownian CA in [3], being asynchronously
timed, should be no different in this regard, but neverthe-
less it requires only three states for cells and only three
transition rules. This is much less than the computation-
ally universal asynchronous CA models discovered thus
far. The asynchronous CA in [6], for example, requires
16 cell states and 6 transition rules.

The ability to reduce complexity in models may also be
useful in physical implementations of Brownian circuits,
which has been the reason to study realizations of Brown-
ian circuits by Single Electron Tunneling (SET) technol-
ogy. Electrons in such implementations would then be
modeled by tokens, and the stochastic nature of tunnel-
ing would be compatible with the asynchronous nature
of Brownian circuits. Additionally, fluctuations—usually
considered a curse in SET technology—would have the po-
tential to be used in a positive way. Tentative steps have
been set in this direction through the simulation of SET
implementations of Brownian circuits [8], though concrete
applications have not yet been demonstrated. An early pro-
posal of the use of fluctuations in SET technology is the
simulated annealing process of a Boltzmann machine in
[10]. This method utilizes fluctuations to search in an en-
ergy landscape, but it is somewhat focused on neural net-
works, rather than on arithmetic operations.

3. Encoding Signals by Noise

Another way to use noise in computation has recently
been proposed in [2]. In this scheme, which is loosely in-
spired by the stochasticity of brain signals, different levels
of signals (like a zero or a one) are encoded through differ-
ent independent noise sources. Since these noise sources
are statistically independent, their correlation, averaged
over time, is zero, and this forms the basis for defining
these sources as orthogonal. This method resembles Code

- 272 -

Division Multiple Access (CDMA) encoding [9], which is
used in wireless communication because of its good noise
robustness.

The scheme in [2] uses reference signals that are orthog-
onal; for binary signals we use the signals H(t) and L(t) to
encode the 1 and the 0, respectively. A signal input to a
circuit, say X(t), is encoded in terms of the reference sig-
nals, so, X(t) = L(t) or X(t) = H(t). Multiplying X(t)
by a reference signal and averaging the resulting product
over time, we obtain a value that is near zero—in case X(t)
is different from the reference signal—or much higher—
otherwise. This time-average is mapped through the step
function S into one of the values 0 and 1, respectively. A
binary INVERTER-gate with input X(t) and output Y(t) can
then be described by the following equation:

Y(t) = S (〈 X(t) H(t) 〉) L(t) + S (〈 X(t) L(t) 〉) H(t)

The input signal is multiplied by H(t) and L(t) respectively,
giving rise to two terms, one of which will map to 0 and the
other to 1. These numbers, when multiplied by the refer-
ence signals L(t) and H(t), then result in the desired out-
put signal of the gate. This gate can be implemented as a
simple analog circuit using an analog multiplier to multi-
ply the input signal X(t) to a reference signal H(t) or L(t),
whereas the time-average of the product is obtained by an
RC-circuit. The function S can be implemented by an ana-
log switch that is set according to whether its input is above
or below a certain value [2]. In a similar way as with the
INVERTER we obtain an AND-gate:

Y(t) = S (〈 X1(t) H(t) 〉 〈 X2(t) H(t) 〉) H(t)

+ S (〈 X1(t) L(t) 〉 + 〈 X2(t) L(t) 〉) L(t)

This gate can be built by the same type of analog circuit
elements as those used in the INVERTER.

The encoding of signals by noise in the above way brings
with it a distinct advantage: noise added to signals tends to
be orthogonal to those signals and will be automatically re-
moved by the averaging process. This may lead designers
to accept a decreased signal level with respect to the noise
level, with the promise of a reduced power consumption.
An overhead in time and hardware resources appears hard
to avoid, though, due to the averaging process and the ne-
cessity in operations to effectively decode signals through
the step function S . Yet the method may form the inspira-
tion for schemes that incorporate noise as a natural given,
and it may ultimately lead to a deeper understanding of the
efficient use of noise in biological neural systems.

4. Discussion and Conclusions

Traditional design methods of computational structures,
in which noise and fluctuations are considered nuisances
that should be suppressed, may need reconsideration. As
feature sizes in integrated circuitry approach nanometer
scale sizes, phenomena occurring at these scales will need

to be actively exploited. Nature serves as a great inspi-
ration in this respect: biological organisms have evolved
in an environment full of noise, and they are thus likely
to contain mechanisms that are not only able to deal with
noise, but also to actively exploit it. Biological organisms
are very complex machines, the control of which involves
an intricate level of information processing. The methods
discussed in this paper may give a glimpse as to how noise
and fluctuations can play a positive role to this end.

Acknowledgments

The contributions of Jia Lee have been indispensable in
the development of Brownian Circuits, and I like to thank
him for the many discussions and close collaborations.

References

[1] H. Ando, F. Peper, and K. Aihara. Chaotic synchro-
nization and de-synchronization for a token-based
computational architecture. In Proc. NOLTA, 2009.

[2] L.B. Kish. Noise-based logic: Binary, multi-valued,
or fuzzy, with optional superposition of logic states.
Physics Letters A, 373:911–918, 2009.

[3] J. Lee and F. Peper. On brownian cellular automata. In
Proc. of Automata 2008, pages 278–291, UK, 2008.
Luniver Press.

[4] J. Lee, F. Peper, S. Adachi, and K. Morita. Univer-
sal delay-insensitive circuits with bi-directional and
buffering lines. IEEE Trans. Computers, 53(8):1034–
1046, 2004.

[5] J. Lee, F. Peper, et. al. Brownian Circuits — Part II:
Efficient Designs and Brownian Cellular Automata.
In preparation, 2009.

[6] F. Peper, J. Lee, F. Abo, T. Isokawa, S. Adachi,
N. Matsui, and S. Mashiko. Fault-tolerance in
nanocomputers: a cellular array approach. IEEE
Transaction on Nanotechnology, 3(1):187–201, 2004.

[7] F. Peper, J. Lee, et. al. Brownian circuits — Part I:
Concept and basic designs. In preparation, 2009.

[8] S. Safiruddin, S.D. Cotofana, F. Peper, and J. Lee.
Building blocks for fluctuation based calculation in
single electron tunneling technology. In Proc. 8th Int.
Conf. on Nanotechnology (IEEE Nano), pages 358–
361, 2008.

[9] A.J. Viterbi. CDMA: Principles of Spread Spectrum
Communication. Prentice Hall, 1995.

[10] T. Yamada, M. Akazawa, T. Asai, and Y. Amemiya.
Boltzmann machine neural network devices us-
ing single-electron tunnelling. Nanotechnology,
12(1):60–67, 2001.

- 273 -

	Navigation page
	Session at a glance
	Technical program

