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Abstract 
 The uniform asymptotic solution with higher-order terms for the scattered fields by the 
discontinuity of the impedance surface has been derived. The validity of the asymptotic solution has 
been confirmed by comparing with the reference solution calculated numerically. The physical 
interpretation of the asymptotic solution is also clarified. 
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1. Introduction 
 
 Ground wave propagation along the earth’s surface is strongly influenced by a discontinuity 
of the surface impedance of the earth [1] – [7]. It is assumed that both the transmitting and receiving 
antennas are placed on or near the earth’s surface. The recovery effect [2] – [5] appearing on the 
portion of the sea over the land-to-sea mixed-path has been examined by using the mixed-path 
theory [2], [3]. The recovery effect has been confirmed experimentally through the measurement 
along the land-to-sea mixed-path [2], [3], [5] – [8]. 

In the present study, we shall examine the reflected and scattered fields when the source and 
observation points are placed sufficiently higher positions from the earth’s surface [9] – [12]. The 
solution for the scattered fields by the discontinuity of the impedance surface has been derived by 
applying Wiener-Hopf technique [9], [10]. Here we shall derive a uniform asymptotic solution 
which contains the higher-order terms for the reflected and scattered fields by applying the aperture 
field method (AFM) to obtain the integral representation for the fields and the saddle point 
technique [13] to evaluate the integral asymptotically. Higher-order scattering terms are included in 
the high-frequency asymptotic solution [11] – [13].  

We will confirm the validity and applicable range of the novel uniform asymptotic solution 
by comparing with the reference solution calculated numerically. The physical interpretation of the 
uniform asymptotic solution is also clarified in this paper.  
 
2. Formulation and Higher-Order High-Frequency Asymptotic Solution 
 
2.1 Formulation and Integral Representation 
 Figures 1(a) and 1(b) show the Cartesian coordinate system (x, y, z), a planar impedance 
surface with an impedance discontinuity, the junction C at x = d, transmitting and receiving 
antennas T and R, the geometrically reflected ray on the impedance surface, the scattered ray 
excited at the junction C, and the aperture plane defined by x = d, ∞<<∞− y

2/1)aε
, . The 

surface impedance changes at the junction x = C from Za (= ,
∞<≤ z0

0 /(μ ωσεε /i+ aaa  ) to Zb 
(= 2/1

0 b ,
=

)/( εμ ωσεε /i+= bbb ). Here )aa ,( σε and )bb ,( σε  denote (dielectric constant, conductivity) 
on the land and the sea, respectively. The vertical transmitting antenna is placed at T(0, 0, h) and the 
vertical receiving antenna is place at R2(x, 0, z) above the geometrical boundary (GB) or at R3(x, 0, 
z)  below the GB as shown in Figs. 1(a) and 1(b), respectively. The geometrical ray reflected on the 
portion of the surface impedance Za (or Zb) and the scattered ray diffracted by the junction at x = C 
are observed at the observation point R2(x, 0, z) (or R3(x, 0, z)). 

∗ ∗
∗∗

             The vertical electric field Ez observed at the receiving antenna R2 or R3 due to the antenna 
current I and antenna height l may be obtained from [6], [8], [11], [12] 
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 (a) Observation point R2 placed above 

GB(geometrical boundary). 
(b) Observation point R3 placed below

GB.  
 Figure 1: Cartesian coordinate system (x, y ,z), planar surface with impedance discontinuity at 

the junction x = C, and aperture plane.  
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where the amplitude function  and the phase function )(zf j ′ )(zq j ′  are given by 
 
 
 
 
 
 
 
 
 
 
 
In (1), z is the integration variable on the aperture plane (x = d, y = 0, ) and k0 
(=

′ ∞<′≤ z0
00 ), ka (=μεω 0a ),and kb (=μω ε 0b ) denote respectively the wavenumbers in the air, on 

the surface with the surface impedance Za, and on the surface with the surface impedance Zb. The 
notations a

μω ε

θ ′ , aθ ′′ , bθ′ , bθ ′′ , Ra,1, Ra,2, Rb,1, and Rb,2 used in the above equations are defined in Figs. 
1(a) and 1(b). The time factor exp(−iω t) is suppressed throughout this paper.  
2.2 Higher-Order High-Frequency Asymptotic Solution 
 Since the asymptotic analysis method for the vertical electric field Ez,3 with j = 3 has been 
considered elsewhere [14], here we will investigate the analysis method for Ez, j with j = 2. The 
physical interpretation of the index j (= 2 or 3) has been explained in [12]. 
             When the observation point R2(x, 0, z) is placed near the GB (geometrical boundary) line, 
the saddle point 2s  is located near the endpoint zzz ′=′ ′ = 0 of the integral in (1). Therefore, by 
applying the saddle point technique applicable uniformly as the saddle point approaches the 
endpoint = 0 [11], [12], [14], one may derive the uniform asymptotic solution for the integral (1). 
Thus, the vertical electric field Ez,2 may be given by 
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In (4) and (5), zE 2,  and z 2,  denote, respectively, the geometrical ray  reflected on 
the surface with the impedance Za (see Fig. 1(a)) and the scattered ray  diffracted by 
the discontinuity of the surface impedance at the junction x = C. The terms , , and  
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constituting the scattered ray solution  are given by  s
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where  and dz  denote, respectively, the incident ray on the junction x = C and the scattered ray 
propagating from C to the observation point R2 in Fig. 1(a). While, 2,  in (4) corresponding to 
the second-order asymptotic solution for the scattered ray  may be given by  

r
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             The last term z 2,  in (4) represents the scattered ray ( 2 ) solution higher than 
and equal to the third-order asymptotic approximation. The novel higher-order asymptotic solution 
may be given by 
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where, 2,z  and 2,z in (10) and (11) denote, respectively, the third-order and the fourth-order 
asymptotic solutions for the scattered ray 2 . The last term 2,zE in (9), which is 
defined by (12) corresponds to the scattered ray solution higher than and equal to the fifth-order 
asymptotic solution. This term may be neglected in the high-frequency condition where k0 >> 1. 
The notations used in the above equations are defined as follows [14] 

1,),3( sE 2,),3( sE
RCT →→ 3,),3( s

 
 
 
 
 
The notation  denotes the saddle point of the integrand in (1) in the complex - plane. 2s
             So far, we have derived the uniform asymptotic solution for 2,z defined in (1). As shown 
in (1), in order to obtain the total field at R2 (see Fig. 1(a)), it is necessary to add the asymptotic 
solution for 3,zE  defined in (1) to  in (4). The asymptotic solution for  may be found 
elsewhere [14], [15]. 
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3. Numerical Results and Discussions 
 
             In Figs. 2(a) and 2(b), we have compared the calculation results obtained from the uniform 
asymptotic solution proposed in this study with the reference solution calculated from (1) by 
performing the numerical integration. Vertical electric field magnitudes are calculated as the 
function of the distance x (λ). In both Figs. 2(a) and 2(b), it is observed that the uniform asymptotic 
solution including fourth-order asymptotic solution (○ ○ ○ : open circles) agrees very well with the 
reference solution (        : solid curves) in the whole region shown in the figures. However, when the 
observation point is placed at the lower position as in Fig. 2(a), the first-order asymptotic solution 
(          ) and the second-order asymptotic solution (          ) deviate from the reference solution (      ) 
in the ranges x > 750λ. The errors of these asymptotic solutions are relatively large as shown 
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(a) Observation point is located at lower 
position. 

(b) Observation point is located at 
sufficiently higher position.  

 Figure 2: Comparisons of uniform asymptotic solutions with the reference solution.  
in Fig. 2(a). However, if we increase the height of the receiving antenna, the first-order and second-
order asymptotic solutions agree very well with the reference solution up to x = 1350λ as shown in 
Fig. 2(b). 
 
4. Conclusion 
 
             By applying the aperture field method and the saddle point technique applicable uniformly 
as the saddle point approaches the endpoint of the integration path, we have derived the higher-
order asymptotic solution for the scattered fields by the discontinuity of the planar impedance 
surface. We have confirmed the validity and importance of the higher-order asymptotic solution by 
comparing with the reference solution. Also shown is the physical interpretation of the asymptotic 
solution for the scattered fields. 
 
References 
 
[1] K. Furutsu, Journal of the Radio Research Laboratories, vol.2, no.10, pp.345-398, Oct. 1955. 
[2] J. R. Wait, Journal of Research of the National Bureau of Standards, vol.57, no.1, pp.1-15, July 1956. 
[3] J. R. Wait, IEEE Antennas and Propagation Magazine, vol.40, no.5, pp.7-24, Oct. 1998. 
[4] L. Sevgi and L. B. Felsen, Int. Journal of Numer. Model. : Electronic Networks, Devices and 

Fields, vol.11, pp.87-103, Nov. 1998. 
[5] T. Kawano, K. Goto, and T. Ishihara, IEICE Trans. on Electron., vol.E90-C, no.2, pp.288-294, Feb. 2007. 
[6] T. Kawano, K. Goto, and T. Ishihara, IEICE Trans. on Electron., vol.E92-C, no.1, pp.46-54, Jan. 2009. 
[7] T. Kawano, K. Goto, and T. Ishihara, IEICE Trans. on Electron., vol.E94-C, no.1, pp.10-17, Jan. 2011. 
[8] T. Kawano, K. Goto, and T. Ishihara, IEEE AP-S Int. Symp., Charleston, CD-ROM (ISBN:978-

1-4244-3647-7), June 2009. 
[9] R. G. Rojas, IEEE Trans. on Antennas and Propag., vol.36, no.1, pp.71-83, Jan. 1988. 
[10] T. Lertwiriyaprapa, P. H. Pathak, and J. L. Volakis, Radio Science, vol.42, RS6S18, 

doi:10.1029/2007RS003689, 2007. 
[11] T. Kawano, K. Goto, and T. Ishihara, IEEE AP-S Int. Symp., Tronto, CD-ROM (ISBN: 978-1-

4244-4968-2), July 2010. 
[12] T. Kawano, K. Goto, and T. Ishihara, IEICE Electronics Express, vol.7, no.14, pp.1072-1078, July 2010. 
[13] L. B. Felsen and N. Marcuvitz eds., Radiation and Scattering of Waves, chap.4, IEEE Press, 

(Classic Reissue), New Jersey, 1994. 
[14] T. Kawano, K. Goto, and T. Ishihara, IEEE AP-S Int. Symp., Spokane, July 2011 (to be appeared). 
[15] T. Kawano, K. Goto, and T. Ishihara, The Papers of Technical Meeting on Electromagnetic 

Theory, IEE Japan, EMT-10-90, pp.159-164, July 2010. 
 
Acknowledgments 
 
             This work was supported in part by the Grant-in-Aid for Scientific Research (C) 
(21560424) from Japan Society for the Promotion of Science (JSPS). 


